A contribution to Gödel’s axiomatic set theory. I. (English) Zbl 0089.24403

Full Text: EuDML


[1] K. Gödel: The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Annals of Mathematical Studies, Princeton 1940, Third Printing 1953.
[2] A. Tarski: Grundzüge des Systemenkalküls I. Fund. Math. XXV (1935), 503-526; II ibid. XXVI (1936), 283-301. · Zbl 0012.38501
[3] A. Mostowski: Abzählbare Boolsche Körper und ihre Anwendung in der Metamatematik. Fund. Math. XXIX (1937), 34-53. · Zbl 0016.33704
[4] A. Mostowski: An undecidable Arithmetical Statement. Fund. Math. XXXIV (1949), 143-164. · Zbl 0039.00802
[5] L. Rieger: On the algebra of the lower predicate calculus. Czech: O algebře nižšího predikátového počtu, mimeographed lectures, Matematický ustav, Praha 1951.
[6] L. Rieger: On countable generalized \(\sigma\)-algebras, with a new proof of Gödel’s completeness theorem. Czech. Math. J., Vol. 1 (76) (1951), 29-40. · Zbl 0045.15002
[7] L. Rieger: On Free \(\aleph_ \xi\)-complete Boolean Algebras. Fund. Math. XXXVIII (1951), 35-52. · Zbl 0044.26103
[8] D. Hilbert P. Bernays: Grundlagen der Mathematik II. Springer, Berlin 1939. · JFM 65.0021.02
[9] P. Bernays: A system of axiomatic set-theory VI. Journ. of Symb. Log. 13 (1948), 67-79. · Zbl 0030.11502
[10] K. Kuratowski A. Mostowski: Teoria mnogości. Warszawa 1952. · Zbl 0047.05309
[11] J. v. Neumann: Über eine Widerspruchsfreiheitsfrage in der axiomatischen Mengenlehre. J. f. reine und angew. Math. 160 (1931), 227-241. · JFM 55.0052.02
[12] K. Kuratowski: Ann. Soc. Pol. de Math. 3 (1924), 146.
[13] Hao Wang R. Mc Naughton: Les systémes axiomatiques de la théorie des ensembles. Paris, Gauthier Villars, 1953. · Zbl 0050.05001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.