Numerical methods and existence theorems for ordinary differential equations. (English) Zbl 0089.29003


34A45 Theoretical approximation of solutions to ordinary differential equations
65L12 Finite difference and finite volume methods for ordinary differential equations
Full Text: DOI EuDML


[1] Dahlquist, Germund: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand.4, 33-53 (1956).?Stability and error bounds in the numerical integration of ordinary differential equations. Diss. Stockholm 1958. · Zbl 0071.11803
[2] Ince, E. L.: Ordinary differential equations, Sect. 3/4. London: Longmans, Green & Co., 1927 and New York: Dover Publications.
[3] John, F.: On the integration of parabolic equations by difference methods. Communications Pure and Appl. Math.5, 155-211 (1952). · Zbl 0047.33703
[4] Lipschitz, R.: Sur la possibilité d’intégrer complètement un système donné d’équations différentielles. Bull. Sci. Math.10, 149-159 (1876).
[5] Moigno, F. N. M.: Leçons de calcul, 2, p., 385 and 513. Paris: Gauthier-Villars 1844.
[6] Osgood, W. F.: Beweise der Existenz einer Lösung der Differentialgleichungdy/dx=f(x, y) ohne Hinzunahme der Cauchy-Lipschitz-Bedingung. Mh. Math u. Physik9, 331-345 (1898). · JFM 29.0260.03
[7] Peano, G.: Démonstration de l’intégrabilité des équations differentielles ordinaires. Math. Ann.37, 182-228 (1890). · JFM 22.0302.01
[8] Richtmyer, R. D.: Difference methods for initial value problems, Chapt. 3. New York: Interscience Publishers, Inc. · Zbl 0079.33702
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.