×

zbMATH — the first resource for mathematics

Sulla risoluzione del problema misto per le equazioni iperboliche non lineari mediante le differenze finite. (Italian) Zbl 0090.07302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. P. Šatunov,Solution of a mixed problem for the wave equation, « Leningrad. Gos. Univ. Uc. Zap. 144 Ser. Mat. Nauk », 23 (1952).
[2] O. A. Ladyzenskaia,The mixed problem for a hyperbolic equation.
[3] M. Cinquini-Cibrario,Sul problema misto per l’equazione di tipo iperbolico non lineare, « Rendic. Ist. Lomb. ». 76 (1942-43).
[4] M. Cinquini-Cibrario,Equazioni non lineari e teoria delle caratteristiche, Conferenze del C.I M.E. a Varenna. (1956). · Zbl 0075.09702
[5] R. Courant — P. Lax,On nonlinear partial differential equations in two independent variables, « Comm. Pure and Appl. Math. », 2 (1949). · Zbl 0034.20103
[6] R. Courant — E. Isaacson — M. Rees,On the solution of nonlinear hyperbolic differential equations by finite differences, « Comm. Pure and Appl. Math. », 5 (1952).
[7] V. I. Maslennikova,The solution of a mixed problem for the unsteady motion of a rotating viscons fluid, « Dokl. Akad. Nauk SSSR », 109 (1956).
[8] V. I. Maslennikova,On mixed problems for a system of equations of mathematical physics, « Dokl. Akad. Nauk SSSR », 102 (1955).
[9] A. A. Dezin,Mixed problems for certain symmetric hyperbolic systems, « Dokl. Akad. Nauk », 107 (1956). · Zbl 0070.08804
[10] P. Lax,Weak solutions of nonlinear hyperbolic equations and their numerical computation, Trans. Symp. of fluid mechanics. · Zbl 0055.19404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.