×

zbMATH — the first resource for mathematics

Perturbation theory for nullity, deficiency and other quantities of linear operators. (English) Zbl 0090.09003

PDF BibTeX Cite
Full Text: DOI
References:
[1] N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Berlin, 1954. · Zbl 0056.11101
[2] P. Alexandroff and H. Hopf, Topologie I, Berlin, 1935.
[3] F. Atkinson, A spectral problem for completely continuous operators,Acta Math. Sci. Hungaricae 3 (1952), 53–60. · Zbl 0047.36001
[4] F. Atkinson, On relatively regular operators,Acta Sci. Math. 15 (1953), 38–56. · Zbl 0052.12502
[5] Banach, Théorie des opérations linéaires, Warszawa, 1932.
[6] J. Dieudonné, Sur les homomorphismes d’espaces normés,Bull. Sci. Math. (2) 67 (1943), 72–84. · Zbl 0028.23301
[7] B. Friedman, Operators with a closed range,Comm. Pure and Appl. Math. 8 (1955), 539–550. · Zbl 0065.35301
[8] I. C. Gokhberg and M. G. Krein, Osnovnye polozenija o defektnykh cislakh, kornevych cislakh i indeksakh lineinykh operatorov,Uspekhi Mat. Nauk. 12, 2 (74) (1957), 43–118.
[9] F. Hausdorff, Zur Theorie der linearen Räume,Journ. f. reine u. angew. Math. 167 (1932), 294–311. · JFM 58.1113.05
[10] M. Hukuhara, Théorie des endomorphismes de l’espace vectoriel,Journ. Faculty Sci. Univ. Tokyo, Sec. 1 7 (1954), 129–192; 305–332. · Zbl 0057.33703
[11] B. Sz. Nagy, On the stability of the index of unbounded linear transformations,Acta Matb. Sci. Hungaricae 3 (1952), 49–52. · Zbl 0047.35901
[12] B. Sz. Nagy, On a spectral problem of Atkinson,Acta Math. Sci. Hungaricae 3 (1952), 62–66. · Zbl 0047.36002
[13] B. Yood, Properties of linear transformations preserved under addition of a compietely continuous transformation.Duke Math. J. 18 (1951), 599–612. · Zbl 0043.11901
[14] K. Yosida, Linear operators (in Japanese), Tokyo, 1943.
[15] A. C. Zaanen, Linear analysis, New-York, 1953. · Zbl 0053.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.