×

On the analytic structure of semi-groups of positive matrices. (English) Zbl 0091.13101

PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Chung, K. L.: Some new developments in Markov chains. Trans. Amer. Math. Soc.81, 195-210 (1956). · Zbl 0075.14001
[2] Chung, K. L.: Some aspects of continuous parameter Markov chains. Publ. Inst. Statist., Univ. Paris6, 271-287 (1957). · Zbl 0082.34502
[3] Chung, K. L.: Markov chains with stationary transition probabilities. Heidelberg: Springer 1960. · Zbl 0092.34304
[4] Feller, W.: On boundaries and lateral conditions for the Kolmogoroff differential equations. Annals Math. (2)65, 527-570 (1957). · Zbl 0084.35503
[5] Jurkat, W. B.: On semi-groups of positive matrices (II). Scripta Math.24, 207-218 (1959). · Zbl 0091.13002
[6] Kendall, D. G.: Some further pathological examples in the theory of denumerable Markov processes. Quart. J. Math. (2)7, 39-56 (1956). · Zbl 0075.14101
[7] Kendall, D. G., andG. E. H. Reuter: Some pathological Markov processes with a denumerable infinity of states and the associated semigroups of operators onl. Proc. Intern. Congr. Math. Amsterdam1954 (III), 377-415 (1956). · Zbl 0073.12901
[8] Kolmogorov, A. N.: On some problems concerning the differentiability of the transition probabilities in a temporally homogeneous Markov process having a denumerable number of states [Russian]. Ucenye Zapiski Moskov. Gos. Univ. Matem. (4)148, 53-59 (1951).
[9] Ornstein, D.: The differentiability of transition functions. Bull. Amer. Math. Soc.66, 36-39 (1960). · Zbl 0094.13003
[10] Reuter, G. E. H.: Denumerable Markov processes (II). J. London Math. Soc.34, 81-91 (1959). · Zbl 0089.13803
[11] Titchmarsh, E. C.: Introduction to the theory of Fourier integrals, first ed. Oxford 1937. · Zbl 0017.40404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.