×

zbMATH — the first resource for mathematics

Error analysis of floating-point computation. (English) Zbl 0091.29605

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Carr, J. W. III.: Error Analysis in Floating Point Arithmetic. Commun. of the Assoc. for Comp. Mach.2, 10 (May 1959). · Zbl 0221.68034
[2] Fischer, P. C.: Automatic propagated and round-off error analysis. (To be published.).
[3] Frank, W. L.: Computing eigenvalues of complex matrices by determinant evaluation and by the methods ofDanilewski andWielandt. J. Soc. Indust. Appl. Math.6, 378 (1958). · Zbl 0198.20804
[4] Givens, W.: Numerical computation of the characteristic values of a real symmetric matrix. Oak-Ridge National Laboratory, ORNL-1574.
[5] Hyman, M.: Eigenvalues and eigenvectors of general matrices. Presented at the 12th National Meeting of the Association for Computing Machinery, June 1957, Houston, Texas.
[6] Lidskii, V. B.: O sobstvenyh zna?eniyah summy i proizveniya simmetri?eskih matric. Doklady Akad. Nauk75, 769 (1950).
[7] Metropolis, N.: Automatic round-off error analysis (Unpublished.)
[8] White, P. A.: The computation of eigenvalues and eigenvectors of a matrix. J. Soc. Industr. Appl. Math.6, 393 (1958). · Zbl 0085.33303
[9] Wilkinson, J. H.: The calculation of the eigenvectors of codiagonal matrices. Computer J.1, 90 (1958). · Zbl 0117.11001
[10] Wilkinson, J. H.: Rounding errors in algebraic processes. Proceedings of International Conference on Information Processing. Unesco 1959. · Zbl 0868.65027
[11] Wilkinson, J. H.: The evaluation of the zeros of ill-conditioned polynomials. Numer. Math.1, 150. · Zbl 0202.43701
[12] Wilkinson, J. H.:Householder’s method for the solution of the algebraic eigenproblem. Computer J.3, 23 (1960). · Zbl 0109.09103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.