Steinberg, Robert Finite reflection groups. (English) Zbl 0092.13904 Trans. Am. Math. Soc. 91, 493-504 (1959). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 42 Documents Keywords:Analytic geometry, projective geometry PDF BibTeX XML Cite \textit{R. Steinberg}, Trans. Am. Math. Soc. 91, 493--504 (1959; Zbl 0092.13904) Full Text: DOI OpenURL References: [1] E. Cartan, Thèse, Paris, Nony, 1894. [2] Élie Cartan, La géométrie des groupes simples, Ann. Mat. Pura Appl. 4 (1927), no. 1, 209 – 256 (French). · JFM 53.0392.03 [3] E. Cartan, Complément au Mémoire ”Sur la Géométrie des groupes simples”, Ann. Mat. Pura Appl. 5 (1928), no. 1, 253 – 260 (French). · JFM 54.0445.06 [4] H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2) 35 (1934), no. 3, 588 – 621. · Zbl 0010.01101 [5] -, Lösung der Aufgabe \( 245\), Jber. Deutsch. Math. Verein. vol. 49 (1939) pp. 4-6. · JFM 65.0699.03 [6] -, Regular polytopes, New York, 1949. [7] H. S. M. Coxeter, Extreme forms, Canadian J. Math. 3 (1951), 391 – 441. · Zbl 0044.04201 [8] H. S. M. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765 – 782. · Zbl 0044.25603 [9] G. Frobenius, Über Matrizen aus positiven Elementen, Preuss. Akad. Wiss. Sitzungsber. (1908) pp. 471-476. · JFM 39.0213.03 [10] D. König, Theorie der endlichen und unendlichen Graphen, New York, 1950. · Zbl 0040.10303 [11] Séminaire “Sophus Lie,” Paris, 1954-1955. [12] G. C. Shephard, Some problems on finite reflection groups, Enseignement Math. (2) 2 (1956), 42 – 48. · Zbl 0071.36405 [13] H. Weyl, Über die Darstellungen halbeinfacher Gruppen durch lineare Transformationen, Math. Z. vol. 23 (1925) pp. 271-309, vol. 24 (1926) pp. 328-395 · JFM 51.0319.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.