×

zbMATH — the first resource for mathematics

Symmetric random walks on groups. (English) Zbl 0092.33503

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] William Feller, An Introduction to Probability Theory and Its Applications. Vol. I, John Wiley & Sons, Inc., New York, N.Y., 1950. · Zbl 0077.12201
[2] Paul R. Halmos, Introduction to Hilbert Space and the theory of Spectral Multiplicity, Chelsea Publishing Company, New York, N. Y., 1951. · Zbl 0045.05702
[3] A. G. Kurosh, The theory of groups, Chelsea Publishing Co., New York, 1960. Translated from the Russian and edited by K. A. Hirsch. 2nd English ed. 2 volumes. · Zbl 0094.24501
[4] P. D. Lax, The largest eigenvalue as a convex matrix function, Bull. Amer. Math. Soc. Abstract 63-2-235.
[5] Béla v. Sz. Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes, Ergebnisse der Mathematik und ihrer Grenzgebiete, 5, no. 5, Springer, Berlin, 1942 (German). · JFM 68.0241.01
[6] J. Schur, Beschränkte Bilinearformen unendlich vieler Veränderlicher, (Crelle’s) J. Reine Angew. Math. vol. 140 (1911) p. 6.
[7] A. Wintner, Spektraltheorie der unendlichen Matrizen, Leipzig, S. Hirzel Verlag, 1929. · JFM 55.0230.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.