A method for numerical integration on an automatic computer. (English) Zbl 0093.14006

Full Text: DOI EuDML


[1] Hildebrand, F. B.: Introduction to numerical analysis. New York: McGraw-Hill 1956. · Zbl 0070.12401
[2] Kopal, Z.: Numerical analysis. London: Chapman & Hall 1955. · Zbl 0065.10702
[3] Goodwin, E. T.: Evaluation of integrals of the form \(\int\limits_{ - \infty }^{ + \infty } {f\left( \chi \right)e^{ - \chi ^2 } } d\chi \) . Proc. Cambridge Phil. Soc.45, 241-245 (1949). · Zbl 0033.07001
[4] Longman, I. M.: Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Phil. Soc.52, 764-768 (1956). · Zbl 0072.33803
[5] National Bureau of Standards Appl. Math. Series No. 9. Tables of Chebyshev Polynomials. Washington: Government Printing Office 1952.
[6] Clenshaw, C. W.: The numerical solution of linear differential equations in Chebyshev series. Proc. Cambridge Phil. Soc.53, 134-149 (1957). · Zbl 0077.32503
[7] Clenshaw, C. W.: A note on the summation of Chebyshev series. Math. Tab., Wash.9, 118 (1955). · Zbl 0065.05403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.