zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A method for numerical integration on an automatic computer. (English) Zbl 0093.14006

Full Text: DOI EuDML
[1] Hildebrand, F. B.: Introduction to numerical analysis. New York: McGraw-Hill 1956. · Zbl 0070.12401
[2] Kopal, Z.: Numerical analysis. London: Chapman & Hall 1955. · Zbl 0065.10702
[3] Goodwin, E. T.: Evaluation of integrals of the form $\int\limits_{ - \infty }^{ + \infty } {f\left( \chi \right)e^{ - \chi ^2 } } d\chi $ . Proc. Cambridge Phil. Soc.45, 241-245 (1949). · Zbl 0033.07001 · doi:10.1017/S0305004100024786
[4] Longman, I. M.: Note on a method for computing infinite integrals of oscillatory functions. Proc. Cambridge Phil. Soc.52, 764-768 (1956). · Zbl 0072.33803 · doi:10.1017/S030500410003187X
[5] National Bureau of Standards Appl. Math. Series No. 9. Tables of Chebyshev Polynomials. Washington: Government Printing Office 1952.
[6] Clenshaw, C. W.: The numerical solution of linear differential equations in Chebyshev series. Proc. Cambridge Phil. Soc.53, 134-149 (1957). · Zbl 0077.32503 · doi:10.1017/S0305004100032072
[7] Clenshaw, C. W.: A note on the summation of Chebyshev series. Math. Tab., Wash.9, 118 (1955). · Zbl 0065.05403