×

A structure theory for a class of lattice-ordered rings. (English) Zbl 0094.25305


Full Text: DOI

References:

[1] Artin, E.,Geometric Algebra. Interscience, New York, 1957. · Zbl 0077.02101
[2] Birkhoff, G.,Lattice Theory, Rev. ed., Colloquium Publication no. 25, Amer. Math. Soc., New York, 1948. · Zbl 0033.10103
[3] Birkhoff, G. &Pierce, R. S., Lattice-ordered rings.An. Acad. Brasil. Ci., 28 (1956), 41–69. · Zbl 0070.26602
[4] Bourbaki, N.,Algèbre. (Chap. VI.) Actualités Scientifiques et Industrielles, no. 1179, Paris, 1952. · Zbl 0049.01801
[5] Brainerd, B., On a class of lattice-ordered rings.Proc. Amer. Math. Soc., 8 (1957). 673–683. · Zbl 0086.31401 · doi:10.1090/S0002-9939-1957-0089179-6
[6] Brown, B. &McCoy, N. H., Rings with unit element which contain a given ring.Duke Math. J., 13 (1946), 9–20. · Zbl 0060.07702 · doi:10.1215/S0012-7094-46-01302-6
[7] Chehata, C. G., On an ordered semigroup.J. London Math. Soc., 28 (1953), 353–356. · Zbl 0050.01704 · doi:10.1112/jlms/s1-28.3.353
[8] Divinsky, N., Commutative subdirectly irreducible rings.Proc. Amer. Math. Soc., 8 (1957), 642–648. · Zbl 0078.02604 · doi:10.1090/S0002-9939-1957-0086799-X
[9] Dorroh, J. L., Concerning adjunctions to algebras.Bull. Amer. Math. Soc., 38 (1932), 85–88. · Zbl 0003.38701 · doi:10.1090/S0002-9904-1932-05333-2
[10] Gillman, L. &Henriksen, M., Concerning rings of continuous functions.Trans. Amer. Math. Soc., 77 (1954), 340–362. · Zbl 0058.10003 · doi:10.1090/S0002-9947-1954-0063646-5
[11] Hion, Ya. V., Archimedean ordered rings.Uspehi Mat. Nauk (N. S.), 9 (1954), 237–242 (Russian); Math. Rev. vol. 16, p. 442.
[12] –, Ordered associative rings.Dokl. Akad. Nauk SSSR (N. S.), 101 (1955), 1005–1007. (Russian); Math. Rev. vol. 17, p. 8.
[13] Jacobson, N.,Structure of Rings. Colloquium Publication no. 37, Amer. Math. Soc., Providence, 1956. · Zbl 0073.02002
[14] Jaffard, P., Contribution à l’étude des groupes ordonnés.J. Math. Pures Appl., 32 (1953), 203–280. · Zbl 0051.01303
[15] Johnson, R. E., On ordered domains of integrity.Proc. Amer. Math. Soc., 3 (1952), 414–416. · Zbl 0047.03103 · doi:10.1090/S0002-9939-1952-0047018-9
[16] Malcev, A., On the immersion of an algebraic ring into a field.Math. Ann., 113 (1936), 686–691. · Zbl 0015.38801 · doi:10.1007/BF01571659
[17] McCoy, N. H., Subdirectly irreducible commutative rings.Duke Math. J., 12 (1945), 381–387. · Zbl 0060.05901 · doi:10.1215/S0012-7094-45-01232-4
[18] –,Rings and Ideals. Carus Monograph no. 8, Math. Assoc. of Amer., Buffalo, 1948.
[19] –, Prime ideals in general rings.Amer. J. Math., 71 (1949), 823–833. · Zbl 0035.01804 · doi:10.2307/2372366
[20] Pierce, R. S., Radicals in function rings.Duke Math. J., 23 (1956), 253–261. · Zbl 0071.26002 · doi:10.1215/S0012-7094-56-02323-7
[21] Szendrel, J., On the extension of rings without divisors of zero.Acta Univ. Szeged., 13 (1950), 231–234. · Zbl 0039.26301
[22] Vinogradov, A. A., On the theory of ordered semigroups.Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Nauki, 4 (1953), 19–21 (Russian); Math. Rev. vol. 17, p. 710.
[23] van der Waerden, B. L.,Algebra I. Springer, Berlin, 1955.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.