×

An integral formula for total gradient variation. (English) Zbl 0094.26301


Full Text: DOI

References:

[1] H. Federer, Curvature measures. Trans. Amer. Math. Soc.93, 418-491 (1959). · Zbl 0089.38402 · doi:10.1090/S0002-9947-1959-0110078-1
[2] H.Federer and W. H.Fleming, Normal and integral currents. Ann. of Math. (to appear). · Zbl 0187.31301
[3] W. H.Fleming, Functions whose partial derivatives are measures. Illinois J.Math. (to appear). · Zbl 0151.05402
[4] E. De Giorgi, Su una teoria generale della misura (r?1) dimensionale in uno spazio adr dimensioni. Ann. Mat. pura appl., IV. Ser.36, 191-213 (1954). · Zbl 0055.28504 · doi:10.1007/BF02412838
[5] K. Krickeberg, Distributionen, Funktionen beschr?nkter Variation, und Lebesguescher Inhalt nichtparametrischer Fl?chen. Ann. Mat. pura appl., IV. Ser.44, 105-134 (1957). · Zbl 0082.26702 · doi:10.1007/BF02415194
[6] A. S. Kronrod, On functions of two variables. Uspeci Mat. Nauk5, 24-134 (1950).
[7] L. C.Young, Partial area I. (to appear).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.