×

zbMATH — the first resource for mathematics

On a class of polynomial triangular macro-elements. (English) Zbl 0879.65005
Authors’ abstract: We present a new class of polynomial triangular macro-elements of arbitrary degree which are an extension of the classical Clough-Tocher cubic scheme. Their most important property is that the degree plays the role of a tension parameter, since these macro elements tend to the plane interpolating the vertices data. Graphical examples showing their use in scattered data interpolation are reported.
Reviewer: M.Lenard (Kuwait)

MSC:
65D05 Numerical interpolation
41A05 Interpolation in approximation theory
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
Software:
TSPACK
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alfeld, P., A bivariate C2 clough-tocher scheme, Computer aided geometric des., 1, 257-267, (1984) · Zbl 0597.65005
[2] Böhm, W.; Farin, G.; Kahman, J., A survey of curves and surfaces methods in CAGD, Computer aided geometric des., 1, 1-60, (1984)
[3] Carlson, R.E.; Fritsch, F.N., An algorithm for monotone piecewise bicubic interpolation, SIAM J. numer. anal., 26, 230-238, (1989) · Zbl 0671.65005
[4] Carnicer, J.M.; Dahmen, W., Convexity preserving interpolation and powell-sabin elements, Comput. aided geometric des., 9, 279-289, (1992) · Zbl 0760.65005
[5] Ciarlet, P.G., Sur l’élement de clough et tocher, RAIRO anal. numér., R2, 19-27, (1974) · Zbl 0306.65070
[6] Cline, A.K., Scalar and planar valued curve Fitting using splines under tension, Comm. ACM, 17, 218-223, (1974) · Zbl 0276.65005
[7] Clough, R.W.; Tocher, J.L., Finite element stiffness matrices for analysis of plates in bending, ()
[8] Costantini, P., Co-monotone interpolating splines of arbitrary degree. A local approach, SIAM J. sci. statist. comput, 8, 1026-1034, (1987) · Zbl 0639.65007
[9] Constanti, P., An algorithm for computing shape-preserving interpolating splines of arbitrary degree, J. comput. appl. math., 22, 89-136, (1988)
[10] Costantini, P., On some recent methods for shape-preserving bivariate interpolation, (), 59-68 · Zbl 0707.41001
[11] Costantini, P.; Fontanella, F., Shape-preserving bivariate interpolation, SIAM J. numer. anal., 27, 488-506, (1990) · Zbl 0696.65006
[12] Costantini, P.; Manni, C., A local scheme for bivariate comonotone interpolation, Comput. aided geometric des., 8, 371-391, (1991) · Zbl 0744.65006
[13] P. Contatntini and C. Manni, A bicubic shape-preserving blending scheme, Computer Aided Geometric Des. to appear.
[14] P. Costantini and C. Manni, Monotonicity-preserving interpolation of non-gridded data, Comput. Aided Geometric Des., to appear. · Zbl 0900.68408
[15] Dyn, N.; Rippa, S., Data dependent triangulations for scattered data interpolation, Appl. numer. math., 12, 89-105, (1993) · Zbl 0776.65007
[16] Farin, G., A modified clough-tocher interpolant, Comput. aided geometric des., 2, 19-27, (1985) · Zbl 0586.65007
[17] Farin, G., Triangular Bernstein-Bézier patches, Comput. aided geometric des., 3, 83-127, (1986)
[18] Farin, G., Curves and surfaces for computer aided geometric design, (1988), Academic Press London · Zbl 0694.68004
[19] Grandine, A., On convexity of piecewise polynomial functions on triangulations, Comput. aided geometric des., 6, 181-187, (1989) · Zbl 0675.41029
[20] Kaklis, P.D.; Pandelis, D.G., Convexity preserving polynomial splines of nonuniform degree, IMA J. numer. anal., 10, 223-234, (1990) · Zbl 0699.65007
[21] Kaklis, P.D.; Sapidis, N.S., Convexity-preserving interpolatory parametric splines of non-uniform polynomial degree, Comput. aided geometric des., 12, 1-26, (1995) · Zbl 0875.68831
[22] Lawson, C.L., Software for C1 surface interpolation, (), 161-194
[23] Quak, E.; Schumaker, L.L., Cubic spline Fitting using data dependent triangulations, Comput. aided geometric des., 7, 293-301, (1990) · Zbl 0725.65014
[24] Renka, R.J., Algorithm 716. TSAPACK: tension spline curve Fitting package, Toms, 19, 81-94, (1993) · Zbl 0889.65007
[25] Rippa, S., Long thin triangles can be good for linear interpolation, SIAM J. numer. anal., 20, 257-270, (1992) · Zbl 0748.65011
[26] Sablonnière, P., Composite finite elements of class Ck, J. comput. appl. math., 12&13, 541-550, (1985) · Zbl 0587.41004
[27] Sauer, T., Multivariate Bernstein polynomials and convexity, Comput. aided geometric des., 8, 465-478, (1991) · Zbl 0756.41029
[28] Schmidt, J.W., Rational biquadratic C1 splines in S-convex interpolation, Computing, 47, 87-96, (1991) · Zbl 0760.41007
[29] Schumaker, L.L., Computing optimal triangulations in polygonal domains, Comput. aided geometric des., 10, 329-345, (1993) · Zbl 0780.65088
[30] Schweikert, D.G., Interpolatory tension splines with automatic selection of tension factors, J. math. phys., 45, 312-317, (1966) · Zbl 0146.14102
[31] Strang, G.; Fix, G., An analysis of the finite element method, (1973), Prentice-Hall Englewood Cliffs, NJ · Zbl 0278.65116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.