×

zbMATH — the first resource for mathematics

A contribution to Gödel’s axiomatic set theory. II: Basic notions and application of the theory of dyadic rings of the set theoretical type. (English) Zbl 0095.00903

PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] K. Gödel: The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory. Annals of Mathematics Studies, Princeton 1940, Third Printing 1953.
[2] L. Rieger: A contribution to Gödel’s axiomatic set theory I. Чех. мат. 7 (82), 1957, 323-357. · Zbl 0089.24403
[3] D. Hilbert P. Bernays: Grundlagen der Mathematik II. Springer, Berlin 1939. · JFM 65.0021.02
[4] A. Mostowski: An undecidable arithmetical statement. Fund. Math. XXXIV (1949), 143-164. · Zbl 0039.00802
[5] A. Mostovski: Der gegenwärtige Stand der Grundlagenforschung in der Mathematik. (Die Hauptreferate des 8. Polnischen Mathematikerkongresses, Hrsg. v. Deutschem Verlag der Wissenschaften.) Berlin 1954, p. 11 - 44. · Zbl 0057.24307
[6] T. Skolem: Über die Nichtcharacterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich ausschliesslich Zahlenvariablen. Fund. Math. XXII (1934), 150-161. · Zbl 0010.04902
[7] T. Skolem: Über die Unmöglichkeit einer vollständigen Characterisierung ... Norsk mat. forenings skr., Serie II (1933), 73 - 74. · Zbl 0007.19305
[8] F. Hausdorff: Grundzüge der Mengenlehre. Leipzig Veit, 1914. · JFM 45.0123.01
[9] K. Kuratowski A. Mostowski: Teoria mnogości. Monogr. mat., Warszawa- Wroclaw 1952. · Zbl 0047.05309
[10] W. Krull: Allgemeine Bewertungstheorie. Crelle J. 167 (1932), 160-196. · Zbl 0004.09802
[11] B. v. d. Warden: Moderne Algebra I. Berlin, Springer 1937
[12] O. F. G. Schilling: The Theory of Valuation. Am. Math. Soc., New York 1950. · Zbl 0037.30702
[13] R. Sikorski: On an ordered algebraic field. C. R. Soc. Sci. Varsovie, Cl. III, XLI (1948), 69-96. · Zbl 0039.27603
[14] A. Hajnal L. Kalmár: An elementary combinatorial theorem... Publ. Math. Debrecen, 4 (1956), 431-449. · Zbl 0071.01005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.