Functional completeness in the small. Algebraic structure theorems and identities. (English) Zbl 0095.02201

Full Text: DOI EuDML


[1] Foster, A. L.: Generalized ?Boolean? theory of universal algebras, Part I: Subdirect sums and normal representation theorem. Math. Z.58, 306-336 (1953). · Zbl 0051.02201 · doi:10.1007/BF01174150
[2] Foster, A. L.: Part II: Identities and subdirect sums of functionally complete algebras. Math. Z.59, 191-199 (1953). · Zbl 0051.26202 · doi:10.1007/BF01180250
[3] Foster, A. L.: The identities of ? and unique factorization within ? classes of universal algebras. Math. Z.62, 171-188 (1955). · Zbl 0064.26301 · doi:10.1007/BF01180631
[4] Foster, A. L.: The generalized Chinese Remainder Theorem for universal algebras; Subdirect factorization. Math. Z.66, 452-469 (1957). · Zbl 0077.03705 · doi:10.1007/BF01186622
[5] McCoy, N. H., andDeane Montgomery: A representation of generalized Boolean rings. Duke Math. J.3, 455-459 (1937). · Zbl 0017.24402 · doi:10.1215/S0012-7094-37-00335-1
[6] O’Keefe, E. S.: On the independence of primal algebras. Math. Z.73, 79-94 (1960). · Zbl 0099.25901 · doi:10.1007/BF01163270
[7] Sioson, F.: Contributions to primal algebra theory and independence. Doctoral Dissertation, University of Calif. Berkeley (1960).
[8] Stone, M. H.: The theory of representations of Boolean algebras. Trans. Am. Math. Soc.40, 37-111 (1936). · Zbl 0014.34002
[9] Wade, L. I.: Post algebras and rings. Duke Math. J.12, 389-395 (1945). · Zbl 0063.08105 · doi:10.1215/S0012-7094-45-01233-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.