×

Shrinkable neighborhoods in Hausdorff linear spaces. (English) Zbl 0096.07902


References:

[1] Borsuk, Karol: Sur un espace compact localement contractile qui n’est pas un rétracte absolu de voisinage. Fundamenta Math.35, 175-180 (1948). · Zbl 0032.12302
[2] Bourgin, D. G.: Linear topological spaces. Am. J. Math.65, 637-659 (1943). · Zbl 0060.26403 · doi:10.2307/2371871
[3] Dowker, C. H.: On a theorem of Hanner. Arkiv Mat.2, 307-313 (1952). · Zbl 0048.41003 · doi:10.1007/BF02591500
[4] Dugundji, J.: An extension of Tietze’s theorem. Pacific J. Math.1, 353-367 (1951). · Zbl 0043.38105
[5] Eidelheit, M., andS. Mazur: Eine Bemerkung über die Räume von Typus (F). Studia Math.7, 159-161 (1938). · Zbl 0018.21903
[6] Fast, H., andS. Swierczkowski (editors): The New Scottish Book. Wroctaw 1946-1958.
[7] Hanner, Olof: Solid spaces and absolute retracts. Arkiv Mat.1, 375-382 (1951). · Zbl 0042.41101 · doi:10.1007/BF02591374
[8] Hanner, Olof: Retraction and extension of mappings of metric and non-metric spaces. Arkiv Mat.2, 315-360 (1952). · Zbl 0048.41002 · doi:10.1007/BF02591501
[9] Ives, Robert Trull: Semi-convexity and locally bounded spaces. Ph. D. Thesis, University of Washington, Seattle, Washington, U.S.A. June 1957.
[10] Kinoshita, S.: On some contractible continua without fixed-point property. Fundamenta Math.40, 96-98 (1953). · Zbl 0053.12503
[11] Klee, Victor: Leray-Schauder theory without local convexity. Math. Ann.141, 286-296 (1960). · Zbl 0096.08001 · doi:10.1007/BF01360763
[12] Kuratowski, C.: Sur quelques problèmes topologiques concernant le prolongement des fonctions continues. Coll. Math.2, 186-191 (1951). · Zbl 0045.11803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.