A Runge-Kutta procedure for the Goursat problem in hyperbolic partial differential equations. (English) Zbl 0097.12004

Full Text: DOI


[1] Diaz, J. B.: On an analogue of the Euler-Cauchy polygon method for the numerical solution of ux,y=f(x,y,u,ux,uy). Arch. Rational Mech. Anal. 1, 357-390 (1958). · Zbl 0084.11501 · doi:10.1007/BF00298015
[2] Kutta, W.: Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46, 435-453 (1901).
[3] Moore, R. H.: On approximate solutions of non-linear hyperbolic partial differential equations. Arch. Rational Mech. Anal. 6, 75-88 (1960). · Zbl 0099.33604 · doi:10.1007/BF00276155
[4] Prasad, G.: Six Lectures on Mean Value Theorems of Differential Calculus. Univ. of Calcutta, 1931.
[5] Runge, C.: Über die Numerische Auflösung von Differentialgleichungen. Math. Ann. 46, 167-178 (1895). · doi:10.1007/BF01446807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.