Schwarz, Štefan On dual semigroups. (English) Zbl 0098.01602 Czech. Math. J. 10(85), 201-230 (1960). Reviewer: L. Lesieur Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 18 Documents MSC: 20M10 General structure theory for semigroups Keywords:semigroup theory PDF BibTeX XML Cite \textit{Š. Schwarz}, Czech. Math. J. 10(85), 201--230 (1960; Zbl 0098.01602) Full Text: EuDML References: [1] R. Baer: Inverses and zero-divisors. Bull. Amer. Math. Soc. 48 (1942), 630-638. · Zbl 0060.07103 [2] R. Baer: Rings with duals. Amer. J. Math. 65 (1943), 569-584. · Zbl 0060.07201 [3] F. F. Bonsall A. W. Goldie: Annihilator algebras. Proc. London Math. Soc. 4 (1954), 154-167. · Zbl 0055.10602 [4] A. H. Clifford: Semigroups without nilpotent ideals. Amer. J. Math. 71 (1949), 834-844. · Zbl 0045.30101 [5] M. Hall: A type of algebraic closure. Ann. of Math. 40 (1939), 360-369. · Zbl 0021.10201 [6] I. Kaplansky: Dual rings. Ann. of Math. 49 (1948), 689-701. · Zbl 0031.34401 [7] M. A. Najmark: Normirovannije koljca. (Russian), Gostechizdat, Moskva, 1956. [8] T. Nakayama: On Frobeniusean algebras I and II. Ann. of Math. 40 (1939), 611-633 and 42 (1941), 1-21. · Zbl 0021.29402 [9] T. Nakayama: Algebras with anti-isomorphic left and right ideal lattices. Proc. Imp. Acad. Tokyo 17 (1941), 53-56. · Zbl 0026.05802 [10] D. Bees: On semi-groups. Proc. Cambridge Phil. Soc. 36 (1940), 387-400. · Zbl 0028.00401 [11] Š. Schwarz: On semigroups having a kernel. Czechoslovak Math. J. 1 (76) (1951), 229-265. · Zbl 0048.25302 [12] Š. Schwarz: Maksimal’nije idealy v teoriji polugrupp II. (Russian), Czechoslovak Math. J. 3 (78) (1953), 365-383. [13] K. G. Wolfson: Annihilator rings. J. London Math. Soc. 31 (1956), 94-104. · Zbl 0070.11901 [14] A. H. Clifford: Matrix representations of completely simple semigroups. Amer. J. Math. 64 (1942), 327-342. · Zbl 0061.02404 [15] W. D. Murin: Matrix representations of semigroups. Proc. Camb. Phil. Soc. 53 (1956), 5-12. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.