×

Homologie nicht-additiver Funktoren. Anwendungen. (German) Zbl 0098.36005


Keywords:

topology
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] J. F. ADAMS, On the cobar construction, Proc. Nat. Acad. Sci., USA, 42 (1956), 409-412. · Zbl 0071.16404
[2] W. D. BARCUS-J. P. MEYER, The suspension of a loop space, Amer. J. Math., 80 (1958), 895-920. · Zbl 0086.37504
[3] N. BOURBAKI, Séminaire, Exposé 170, de A. DOLD, Dezember, 1958, Paris. · Zbl 0125.01102
[4] D. BUCHSBAUM, Exact categories and duality, Trans. Amer. Math. Soc., 80 (1955), 1-34. · Zbl 0065.25502
[5] H. CARTAN, Algèbres d’Eilenberg-MacLane et homotopie, Séminaire, H. CARTAN, 7 (1954-1955), Paris.
[6] H. CARTAN, Quelques questions de topologie, Séminaire, H. CARTAN, 9 (1956-1957), Paris.
[7] H. CARTAN-S. EILENBERG, Homological algebra, Princeton University Press, Princeton, N.J. 1956. · Zbl 0075.24305
[8] C. CHEVALLEY, Fundamental concepts of algebra, Academic Press Inc., New York, 1956. · Zbl 0074.01502
[9] A. DOLD, Homology of symmetric products and other functors of complexes, Ann. of Math. 68 (1958), 54-80. · Zbl 0082.37701
[10] A. DOLD, Zur homotopietheorie der kettenkomplexe, Math. Annalen, 140 (1960), 278-298. · Zbl 0093.36903
[11] A. DOLD-D. PUPPE, Non-additive functors, their derived functors, and the suspension homomorphism, Proc. Nat. Acad. Sci., USA, 44 (1958), 1065-1068. · Zbl 0098.36004
[12] S. EILENBERG-S. MACLANE, On the groups H(π, n) I, Ann. of Math., 58 (1953), 55-106. · Zbl 0050.39304
[13] S. EILENBERG-S. MACLANE, On the groups H(π, n) II, Ann. of Math., 60 (1954), 49-139. · Zbl 0055.41704
[14] S. EILENBERG-J. A. ZILBER, On products of complexes, Amer. J. Math., 75 (1953), 200-204. · Zbl 0050.17301
[15] R. GODEMENT, Topologie algébrique et théorie des faisceaux, Act. Sci. Ind., 1252, Hermann, Paris, 1958. · Zbl 0080.16201
[16] A. GROTHENDIECK, Sur quelques points d’algèbre homologique, Tôhoku Math. J., 9 (1957), 119-121. · Zbl 0118.26104
[17] D. M. KAN, Abstract homotopy II, Proc. Nat. Acad. Sci. USA, 42 (1956), 255-258. · Zbl 0071.16702
[18] D. M. KAN, Functors involving css-complexes, Trans. Amer. Math. Soc., 87 (1958), 330-346. · Zbl 0090.39001
[19] D. M. KAN, On the homotopy relation for css-maps, Bol. Soc. Mat. Mexicana (1957), 75-81. · Zbl 0089.39102
[20] S. MACLANE, Simplicial topology I, Lecture notes by J. Yao, University of Chicago, 1959.
[21] J. MILNOR, The construction FK, Mimeographed notes, Princeton University, 1956.
[22] J. C. MOORE, Semi-simplicial complexes, Mimeographed notes, Princeton University, 1955-1956.
[23] M. NAKAOKA, Decomposition theorems for homology groups of symmetric groups, Ann. of Math., 71 (1960), 16-42. · Zbl 0090.39002
[24] D. PUPPE, Homotopie und homologie in abelschen gruppen- und monoidkomplexen I, Math. Zeitschr., 68 (1958), 367-406. · Zbl 0078.15501
[25] D. PUPPE, Homotopie und homologie in abelschen gruppen- und monoidkomplexen II, Math. Zeitschr., 68 (1958), 407-421. · Zbl 0078.15501
[26] J. P. SERRE, Homologie singulière des espaces fibrés. applications, Ann. of Math., 54 (1951), 425-505. · Zbl 0045.26003
[27] P. A. SMITH, Manifolds with abelian fundamental groups, Ann. of Math., 37 (1936), 526-533. · JFM 62.0661.02
[28] E. SPANIER, Infinite symmetric products, functions spaces, and duality, Ann. of Math., 69 (1959), 142-148. · Zbl 0086.37401
[29] N. E. STEENROD, The topology of fibre bundles, Princeton University Press, Princeton N.J. 1951. · Zbl 0054.07103
[30] N. E. STEENROD, Cohomology operations derived from the symmetric group, Comment. Math. Helv., 31 (1957), 195-218. · Zbl 0077.16701
[31] G. W. WHITEHEAD, On the homology suspension, Ann. of Math., 62 (1955), 254-268. · Zbl 0067.41201
[32] A. DOLD-R. THOM, Quasifaserungen und unendliche symmetrische produkte, Ann. of Math., 67 (1958), 239-281. · Zbl 0091.37102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.