Group-like structures in general categories. I. Multiplications and comultiplications. (English) Zbl 0099.02101

Full Text: DOI EuDML


[1] Berstein, I., andP. J. Hilton: Category and generalized Hopf invariants. Illinois J. Math.4, 437 (1960). · Zbl 0113.38301
[2] Eckmann, B., andP. J. Hilton: Groupes d’homotopie et dualité I, II, III. Compt. rend.246, pp. 2444, 2555, 2993 (1958). · Zbl 0092.40001
[3] Eckmann, B., andP. J. Hilton: Operators and cooperators in homotopy theory. Math. Ann.141, 1 (1960). · Zbl 0094.17301
[4] Eckmann, B., andP. J. Hilton: Homotopy groups of pairs and exact sequences. Comment. Math. Helv.34, 271 (1960). · Zbl 0099.17904
[5] Eckmann, B., andP. J. Hilton: Structure maps in group theory. Fund. Math.50, 207 (1961). · Zbl 0104.01703
[6] Hilton, P. J.: Homotopy and duality. Lecture notes. Cornell University, 1959.
[7] Kan, D. M.: Adjoint functors. Trans. Am. Math. Soc.87, 294 (1958). · Zbl 0090.38906
[8] Kan, D. M.: On monoids and their dual. Bol. Soc. Math. Mex.3, 52 (1958). · Zbl 0128.24801
[9] Kurosh, A. G., A. Kh. Livshits andE. G. Shul’geifer: Foundations of the theory of categories. Uspekhi Matem. Nauk XV,6, 1 (1960).
[10] Tsalenko, M. S.: On the foundations of the theory of categories. Uspekhi Matem. Nauk XV,6, 53 (1960). · Zbl 0098.25405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.