×

zbMATH — the first resource for mathematics

Chebyshev semi-iterative methods, successive overrelaxation iterative methods, and second order Richardson iterative methods. I, II. (English) Zbl 0099.10903

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arms, R. J., L. D. Gates andB. Zondek: A method of block iteration. Journal Soc. Indust. Appl. Math.4, 220?229 (1956). · Zbl 0077.32502 · doi:10.1137/0104012
[2] Blair, A., N. Metropolis, J. v. Neumann, A. H. Taub andM. Tsingou: A study of a numerical solution of a two-dimensional hydrodynamical problem. Math. Tables and Other Aids to Computation13, 145?184 (1959). · Zbl 0102.33603 · doi:10.2307/2002710
[3] Cuthill, Elizabeth H., andRichard S. Varga: A method of normalized block iteration. Journal Assoc. Computing Mach.6, 236?244 (1959). · Zbl 0088.09403 · doi:10.1145/320964.320981
[4] Flanders, Donald A., andGeorge Shortley: Numerical determination of fundamental modes. Journal of Applied Physics21, 1326?1332 (1950). · Zbl 0039.34101 · doi:10.1063/1.1699598
[5] Forsythe, G. E.: Solving linear algebraic equations can be interesting. Bull. Amer. Math. Soc.59, 299?329 (1953). · Zbl 0052.12903 · doi:10.1090/S0002-9904-1953-09718-X
[6] Frank, Werner: Solution of linear systems byRichardson’s method. Journal Assoc. Computing Mach.7, 274?286 (1960). · Zbl 0097.11404 · doi:10.1145/321033.321041
[7] Frankel, Stanley P.: Convergence rates of iterative treatments of partial differential equations. Math. Tables Aids Comput.4, 65?75 (1950). · doi:10.2307/2002770
[8] Golub, Gene H.: The use of Chebyshev matrix polynomials in the iterative solution of linear equations compared with the method of successive overrelaxation. Doctoral Thesis, University of Illinois, 1959.
[9] Heller, J.: Simultaneous, successive and alternating direction iterative methods. Journal Soc. Indust. Appl. Math.8, 150?173 (1960). · Zbl 0109.34602 · doi:10.1137/0108009
[10] Householder, A. S.: The approximate solution of matrix problems. Journal Assoc. Computing Mach.5, 205?243 (1958). · Zbl 0094.31003 · doi:10.1145/320932.320933
[11] Kahan, W.: Gauss-Seidel methods of solving large systems of linear equations. Doctoral Thesis, University of Toronto, 1958.
[12] Lanczos, Cornelius: Solution of systems of linear equations by minimized iterations. Journal Research Nat. Bureau of Standards49, 33?53 (1952). · doi:10.6028/jres.049.006
[13] Parter, Seymour V.: On two-line iterative methods for the Laplace and biharmonic difference equations. Numerische Mathematik1, 240?252 (1959). · Zbl 0094.31201 · doi:10.1007/BF01386388
[14] Riley, James D.: Iteration procedures for the dirichlet Difference problem. Math. Tables Aids Comput.8, 125?131 (1954). · Zbl 0055.35604 · doi:10.2307/2001924
[15] Romanovsky, V.: Recherches sur les chaînes deMarkoff. Acta Math.66, 147?251 (1936). · Zbl 0014.02802 · doi:10.1007/BF02546519
[16] Sheldon, J. W.: On the spectral norms of several iterative processes. Journal Assoc. Computing Mach.6, 494?505 (1959). · Zbl 0168.13502 · doi:10.1145/320998.321003
[17] Stiefel, Eduard L.: Kernel polynomials in linear algebra and their numerical applications. National Bureau of Standards Applied Math. Series 49, U.S. Government Printing Office, Washington, D. C. 1958, p. 1?22. · Zbl 0171.35703
[18] Todd, John: The condition of a certain matrix. Proc. Cambridge Philos. Soc.46, 116?118 (1950). · Zbl 0034.37601 · doi:10.1017/S0305004100025536
[19] Varga, Richard S.: A comparison of the successive overrelaxation method and semi-iterative methods using Chebyshev polynomials. Journal Soc. Indust. Appl. Math.5, 39?46 (1957). · Zbl 0080.10701 · doi:10.1137/0105004
[20] Varga, Richard S.: Numerical solution of the two-group diffusion equation inx?y geometry. IRE Trans. of the Professonal Group on Nuclear Science, N.S.4, 52?62 (1957). · doi:10.1109/TNS2.1957.4315586
[21] Varga, Richard S.:p-cyclic matrices: a generalization of the Young-Frankel successive overrelaxation scheme. Pacific Journal of Math.9, 617?628 (1959). · Zbl 0088.09402 · doi:10.2140/pjm.1959.9.617
[22] Varga, Richard S.: Factorization and normalized iterative methods. Boundary Problems in Differential Equations, the University of Wisconsin Press, Madison 1960, p. 121?142.
[23] Wachspressm E. L., P. M. Stone andC. E. Lee: Mathematical techniques in two-space-dimension multigroup calculations. Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, United Nations, Geneva, 1958, volume 16, p. 483?488.
[24] Wielandt, Helmut: Unzerlegbare, nicht negative Matrizen. Math. Z.52, 642?648 (1950). · Zbl 0035.29101 · doi:10.1007/BF02230720
[25] Young, David: Iterative methods for solving partial differences equations of elliptic type. Doctoral Thesis, Harvard University, 1950.
[26] Young, David: OnRichardson’s method for solving linear systems with positive definite matrices. Journal Math. and Physics32, 243?255 (1953).
[27] Young, David: Iterative methods for solving partial difference equations of elliptic type. Trans. Amer. Math. Soc.76, 92?111 (1954). · Zbl 0055.35704 · doi:10.1090/S0002-9947-1954-0059635-7
[28] Young, David: On the solution of linear systems by iteration. Proceedings of the Sixth Symposium in Applied Math., p. 283?298. New York: McGraw-Hill 1956. · Zbl 0071.11801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.