Parry, William On the \(\beta\)-expansions of real numbers. (English) Zbl 0099.28103 Acta Math. Acad. Sci. Hung. 11, 401-416 (1960). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 14 ReviewsCited in 475 Documents MSC: 11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension × Cite Format Result Cite Review PDF Full Text: DOI References: [1] A. Rényi, Representations for real numbers and their ergodic properties,Acta Math. Acad. Sci. Hung.,8 (1957), pp. 477–493. · Zbl 0079.08901 · doi:10.1007/BF02020331 [2] P. R. Halmos,Lectures on ergodic theory, Mathematical Society of Japan (1956). · Zbl 0073.09302 [3] F. Riesz etB. Sz.-Nagy,Leçons d’analyse fonctionnelle (Budapest, 1952). [4] P. R. Halmos,Measure theory (New York, 1950). [5] M. E. Munroe,Introduction to measure and integration (Cambridge, 1953). · Zbl 0050.05603 [6] J. W. S. Cassels,An introduction to diophantine approximations, Cambridge Tracts (1957). · Zbl 0077.04801 [7] G. D. Birkhoff, Proof of the ergodic theorem,Proc. Nat. Acad. Sci. USA,17 (1931), pp. 162–166. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.