×

zbMATH — the first resource for mathematics

On a theorem of V. Pták concerning best approximation of continuous functions in the metric \(\int\limits_a^b | x(t)| dt\). (English) Zbl 0099.28202

PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] Хавинсон С. Я.: К вопросу о единственности многоглена наилучшего приближения в метрике пространства \(L_1\). Докл. Акад”. Наук СССР, 105 (1955), но. 6, 1159-1161. · Zbl 0068.31701
[2] Хавинсон С. Я.: О единственности функции наилучшего приближения в метрике пространства \(L_1\). Изв. Акад. Наук СССР, сер. мат., 22 (1958), 243-270. · Zbl 0087.10601
[3] Jackson D.: A general class of problems in approximation. Amer. Journal of Math., 46 (1924), 215-234. · JFM 50.0193.02
[4] Pták V.: A remark on approximation of continuous functions. Czechoslovak Math. Journal, 8 (1958), 251-256. · Zbl 0082.05303
[5] Pták V.: On approximation of continuous functions in the metric \(\int _{a}^{b}| x(t)| dt\). Czechoslovak Math. Journal, 8 (1958), 267-273. · Zbl 0082.27804
[6] Pták V.: Supplement to the article ”On approximation of continuous functions in the metric \(\int _{a}^{b}| x(t)| dt\). Czechoslovak Math. Journal, 8 (1958), 464. · Zbl 0082.27804
[7] Singer I.: Proprietati ale suprafetei sferei unitate si aplicatii la rezolvarea problemei unieitatii polinomului de cea mai buna aproximatie in spatii Banach oareeare. Studii si cercet. mat., 7 (1956), No. 1 - 2, 95-145.
[8] Singer I.: Caractérisation des éléments de meilleure approximation dans un espace de Banach quelconque. Acta Sci. Math. (Szeged), 17 (1956), fasc. 3-4, 181-189. · Zbl 0072.13003
[9] Singer I.: Asupra unicitatii elementului de cea mai bunä aproximatie in spatii Banach oarecare. Studii si cercet. mat., 8 (1957), No. 1-2, 235-244.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.