×

Non-linear deflection of thin elastic plates under tension. (English) Zbl 0099.40802


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agmon, Comm. Pure Appl. Math. 12 pp 623– (1959)
[2] Bromberg, Quart. Appl. Math. 3 pp 246– (1945)
[3] Bromberg, Comm. Pure Appl. Math. 9 pp 633– (1956)
[4] Chien, Sci. Rep. Nat. Tsing Hua Univ. Ser. A 5 pp 71– (1948)
[5] Davis, J. Rat. Mech. Anal. 5 pp 605– (1956)
[6] Douglis, Comm. Pure Appl. Math. 8 pp 503– (1955)
[7] An elastic plate problem with boundary layer: asymptotic treatment and a priori pointwise estimates, Dissertation, New York University, June, 1959.
[8] A remark on potential theory and Schauder estimates, Technical Report No. 91, Applied Mathematics and Statistics Laboratories, Stanford University, 1960.
[9] Friedrichs, Amer. J. Math. 63 pp 839– (1941)
[10] Hencky, Z. Math. Phys. 63 pp 311– (1915)
[11] Keller, Comm. Pure Appl. Math. 11 pp 273– (1958)
[12] Levinson, Ann. of Math. 51 pp 428– (1950)
[13] Morosov, Doklady. Akad. Nauk SSSR 114 pp 968– (1957)
[14] von Kármán, Encyklopädie der Mathematischen Wissenschaften IV-4 pp 348– (1907–1914)
[15] Vishik, Uspehi Matem. Nauk. 12 pp 3– (1957)
[16] Way, Trans. Amer. Soc. Mech. Engers. 56 pp 627– (1934)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.