×

zbMATH — the first resource for mathematics

Direct products of modules. (English) Zbl 0100.26602

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466 – 488. · Zbl 0094.02201
[2] -, Global dimension of rings, Ph.D. Thesis, University of Chicago, 1959.
[3] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305
[4] I. S. Cohen and I. Kaplansky, Rings for which every module is a direct sum of cyclic modules, Math. Z. 54 (1951), 97 – 101. · Zbl 0043.26702 · doi:10.1007/BF01179851 · doi.org
[5] Akira Hattori, The solution of problem 6.1.13, Sûgaku 8 (1956/1957), 207 – 208 (Japanese). Akira Hattori, On Prüfer rings, J. Math. Soc. Japan 9 (1957), 381 – 385. · Zbl 0101.02702 · doi:10.2969/jmsj/00940381 · doi.org
[6] Irving Kaplansky, A characterization of Prufer rings, J. Indian Math. Soc. (N.S.) 24 (1960), 279 – 281 (1961). · Zbl 0118.27202
[7] Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. · Zbl 0057.01901
[8] Irving Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327 – 340. · Zbl 0046.25701
[9] Gottfried Köthe, Verallgemeinerte Abelsche Gruppen mit hyperkomplexem Operatorenring, Math. Z. 39 (1935), no. 1, 31 – 44 (German). · Zbl 0010.01102 · doi:10.1007/BF01201343 · doi.org
[10] Alex Rosenberg and Daniel Zelinsky, Finiteness of the injective hull, Math. Z. 70 (1958/1959), 372 – 380. · Zbl 0084.26505 · doi:10.1007/BF01558598 · doi.org
[11] Richard G. Swan, Groups with periodic cohomology, Bull. Amer. Math. Soc. 65 (1959), 368 – 370. · Zbl 0092.26201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.