zbMATH — the first resource for mathematics

Partitions into \(k\) parts. (English) Zbl 0100.27301

11P81 Elementary theory of partitions
Full Text: DOI EuDML
[1] Glaisher, J. W. L.: Formulae for partitions into given elements, derived from Sylvester’s theorem. Quart. J. Math.40, 275-348 (1909). espy. 283-9. · JFM 40.0235.04
[2] Gupta, H., C. E. Gwyther andJ. C. P. Miller: Tables of partitions (Royal Soc. Math. Tables 4), (Cambridge 1958). · Zbl 0079.06202
[3] Hardy, G. H., andE. M. Wright: Theory of numbers (4th edn., Oxford 1960), 274-5 or Einführung in die Zahlentheorie (transl. of 3rd edn. by H. Rouff, München 1958), 311-2.
[4] Rieger, G. J.: Über Partitionen. Math. Ann.138, 356-362 (1959). · Zbl 0088.25701
[5] Sylvester, J. J.: On subinvariants, i. e. semi-invariants to binary quantics of an unlimited order: Excursus on rational fractions and partitions. Amer. J. Math.5, 119-136 (1882), espy. 131-2. · JFM 14.0072.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.