×

zbMATH — the first resource for mathematics

On congruence lattices of lattices. (English) Zbl 0101.02103

Keywords:
lattices; rings; fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] G. Birkhoff,Lattice theory (New York, 1948). · Zbl 0033.10103
[2] G. Birkhoff andO. Frink, Representations of lattice by sets,Trans. Amer. Math. Soc.,64 (1948), pp. 299–316. · Zbl 0032.00504 · doi:10.1090/S0002-9947-1948-0027263-2
[3] I. R. Büchi, Representation of complete lattices by sets,Porth. Math.,11 (1952), pp. 151–163.
[4] P. Crawley, Lattices whose congruences form a Boolean algebra,Pacific J. of Math.,10 (1960), pp. 787–798. · Zbl 0093.03802 · doi:10.2140/pjm.1960.10.787
[5] G. Grätzer andE. T. Schmidt, Two notes on lattice congruences,Annales Univ. Sci. Budapest, Sectio Math.,1 (1958), pp. 83–87. · Zbl 0089.25603
[6] G. Grätzer andE. T. Schmidt, Ideals and congruence relations in lattices,Acta Math. Acad. Sci. Hung.,9 (1958), pp. 137–175. · Zbl 0085.02002 · doi:10.1007/BF02023870
[7] G. Grätzer andE. T. Schmidt, Standard ideals,Acta Math. Acad. Sci. Hung.,12 (1961), pp. 17–86. · Zbl 0115.01901 · doi:10.1007/BF02066675
[8] J. Hashimoto, Ideal theory for lattices,Math. Japonicae,2 (1952), pp. 149–186. · Zbl 0048.25903
[9] J. Hashimoto, Direct, subdirect decompositions and congruence relations,Osaka Math-Journal,9 (1957), pp. 87–117. · Zbl 0078.01805
[10] L. Nachbin, On a characterization of the lattice of all ideals of a Boolean ring,Fund. Math.,36 (1949), pp. 137–142. · Zbl 0039.25901
[11] O. Ore, Theory of equivalence relations,Duke Math. Journal,9 (1942), pp. 573–627. · Zbl 0060.06201 · doi:10.1215/S0012-7094-42-00942-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.