×

zbMATH — the first resource for mathematics

Über Transformationen von Mannigfaltigkeiten der Dimensionsdifferenz 2. (German) Zbl 0101.16301
Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Freudenthal, H.: Über die Klassen der Sphärenabbildungen. I: Große Dimensionen. Compos. Math.5, 299-314 (1937). · JFM 63.1161.02
[2] Hilton, P. J.: An introduction to homotopy theory. Cambridge Tracts Math. Phys.43 (1953). · Zbl 0051.40302
[3] Pontrjagin, L.: A classification of continuous transformations of a complex into a sphere II. C. R. Acad. Sci. URSS.19, 361-363 (1938). · Zbl 0019.23802
[4] Pontrjagin, L.: Homotopieklassifizierung der Abbildungen der (n+2)-dimensionalen in dien-dimensionale Sphäre. C. R. Acad. Sci. URSS.70, 957-959 (1950). · Zbl 0035.11101
[5] Whitehead, G.: The (n+2)-nd homotopy group of then-sphere. Ann. of Math.52, 245-247 (1950). · Zbl 0037.39703 · doi:10.2307/1969466
[6] Whitney, H.: On the maps of ann-sphere into anothern-sphere. Duke Math. J.3, 46-50 (1937). · JFM 63.1162.01 · doi:10.1215/S0012-7094-37-00305-3
[7] Whitney, H.: The maps of a 4-complex into a 2-sphere. Bull. Amer. Math. Soc.42, 338-339 (1936). · JFM 62.0695.13
[8] Whitney, H.: Maps of ann-complex into ann-sphere. Duke Math. J.3, 51-55 (1937). · Zbl 0016.22901 · doi:10.1215/S0012-7094-37-00306-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.