×

Semi-inner-product spaces. (English) Zbl 0102.32701


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Banach, Théorie des operations linéaires, Warszawa, 1932.
[2] H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. (2) 62 (1955), 217 – 229. · Zbl 0067.35002 · doi:10.2307/1969676
[3] Masanori Fukamiya, On a theorem of Gelfand and Neumark and the \?*-algebra, Kumamoto J. Sci. Ser. A. 1 (1952), no. 1, 17 – 22. · Zbl 0049.08605
[4] I. Gelfand and M. Neumark, On the imbedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 197 – 213 (English, with Russian summary). · Zbl 0060.27006
[5] Paul R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1957) edition. · Zbl 0962.46013
[6] Paul R. Halmos, Günter Lumer, and Juan J. Schäffer, Square roots of operators, Proc. Amer. Math. Soc. 4 (1953), 142 – 149. · Zbl 0050.34004
[7] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. · Zbl 0078.10004
[8] Richard V. Kadison, Isometries of operator algebras, Ann. Of Math. (2) 54 (1951), 325 – 338. · Zbl 0045.06201 · doi:10.2307/1969534
[9] I. Kaplansky, Topological algebra, Notas Mat. No. 16 (1959), v+87. · Zbl 0092.32002
[10] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[11] G. Lumer, Fine structure and continuity of spectra in Banach algebras, An. Acad. Brasil. Ci. 26 (1954), 229 – 233. · Zbl 0057.10101
[12] Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121 – 128 (German). · Zbl 0071.11503 · doi:10.1007/BF01186601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.