×

Das asymptotische Verhalten von Summen über multiplikative Funktionen. (German) Zbl 0104.04201


Keywords:

number theory
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Delange, H.: Théorèmes taubériens et applications arithmétiques. Mém. Soc. Roy. Sci. Liège (4)16, no. 1-2 (1955).
[2] Delange, H.: Sur la distribution des entiers ayant certaines propriétés. Ann. sci. école norm. super. (3)73, 15-74 (1956). · Zbl 0072.27501
[3] Delange, H.: On a theorem ofErdös. Scripta Math.23, 109-116 (1957).
[4] Delange, H.: On some arithmetical functions. Illinois J. Math.2, 81-87 (1958). · Zbl 0079.27302
[5] Delange, H.: Sur certaines fonctions arithmétiques, Sur la distribution des certain entiers. C. R. Acad. Sci. Paris246, 514-517 und 2205-2207 (1958). · Zbl 0079.06703
[6] Erdös, P.: On the distribution function of additive functions. Ann. Math.47, 1-20 (1946). · Zbl 0061.07902
[7] Hornfeck, B.: Über die Zahlen, deren Primteiler in mindestensk-ter Potenz auftreten. Math. Ann.138, 442-449 (1959). · Zbl 0086.03406
[8] Landau, E.: Lösung des Lehmerschen Problems. Am. J. Math.31, 86-102 (1909). · JFM 40.0261.05
[9] Landau, E.: Handbuch der Lehre von der Verteilung der Primzahlen, Bd. 2 (1909).
[10] Ostmann, H.-H.: Additive Zahlentheorie II. Ergeb. Math.11 (1956). · Zbl 0072.03102
[11] Pillai, S.: Generalization of a theorem ofMangoldt. Proc. Indian Acad. Sci. A10, 13-20 (1939).
[12] Rao, S.: Generalization of a theorem ofPillai-Selberg. Proc. Indian Acad. Sci. A11, 502-504 (1940). · JFM 66.0168.02
[13] Selberg, A.: An elementary proof of the prime number theorem for arithmetic progressions. Canad. J. Math.2, 66-78 (1950). · Zbl 0036.30605
[14] Selberg, S.: Zur Theorie der quadratfreien Zahlen. Math. Z.44, 306-318 (1938). · JFM 64.0101.03
[15] Shapiro, H. N.: On primes in arithmetic progressions II. Ann. Math. (2)52, 231-243 (1950). · Zbl 0037.16801
[16] Wirsing, E.: Über die Zahlen, deren Primteiler einer gegebenen Menge angehören. Arch. Math.7, 263-272 (1956). · Zbl 0075.25001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.