×

zbMATH — the first resource for mathematics

Invariant manifolds. (English) Zbl 0104.06303

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kryloff, N., and Bogoliuboff, N.,Application of the Methods of Nonlinear Mechanics to the Theory of Stationary Oscillations, Ukranian Academy of Sciences, Kiev, 1934. · JFM 61.1476.04
[2] Hale, J. K., ”Integral manifolds of perturbed differential systems”, Presented at the Symposium de Ecuaciones Diferenciales Ordinarias, Mexico, D. F., 1959. · Zbl 0083.31301
[3] McCarthy, J., ”The stability of invariant manifolds”, Technical Report No. 36, Applied Mathematics and Statistics Laboratory, Stanford University, 1955. (Abstract) Bull. Amer. Soc. 61 (1955) 149–150.
[4] Levinson, N., ”Small periodic perturbations of an autonomous system with a stable orbit”, Annals of Math. 52 (1950), 727–738. · Zbl 0038.24903 · doi:10.2307/1969445
[5] Hufford, G., ”Banach spaces and the perturbation of ordinary differential equations”, Ph. D. thesis, Princeton University, 1953;Contributions to the Theory of Nonlinear Oscillations, Vol. III, Princeton, 1956. · Zbl 0073.31101
[6] Kyner, W. T., ”A fixed point theorem”, Contributions to the Theory of Nonlinear Oscillations, Vol. III, Princeton, 1956. · Zbl 0073.33501
[7] Kyner, W. T., ”Small periodic perturbations of an autonomous system of vector equations”,Contributions to the Theory of Nonlinear Oscillations, Vol. IV, Princeton, 1958. · Zbl 0082.30103
[8] Coddington, E. A., and Levinson, N.,Theory of Ordinary Differential Equations, New York, 1955. · Zbl 0064.33002
[9] Diliberto, S. P., and Hufford, G., ”Perturbation theorems for nonlinear ordinary differential equations”,Contributions to the Theory of Nonlinear Oscillations, Vol. III, Princeton, 1956. · Zbl 0074.07301
[10] Diliberto, S. P., ”Perturbation theory of periodic surfaces”, Circolo Matematico di Palermo, (to appear). · Zbl 0109.31401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.