×

zbMATH — the first resource for mathematics

Sui teoremi di convergenza delle medie nei processi non stazionari. (Italian) Zbl 0104.11204

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] P. R. Halmos,Lectures on ergodic Theory, « Math. Soc. of. Japan », 1956. · Zbl 0073.09302
[2] Levi Civita, T.; Amaldi, U., Lezioni di Meccanica razionale (1927), Bologna: Zanichelli, Bologna · JFM 49.0565.11
[3] J. Kampe deFeriet,La notion de moyenne dans la théorie de la turbolence, « Rend. Sem. Mat. e fisico di Milauo » vol. XXVII, 1955-56).
[4] A. Blanc -Lapierre, P. Casal A. Tortrat,Méthodes matematiques de la Mécanique, Masson & Cie, éd. Paris (1959). · Zbl 0084.21404
[5] Birkhoff, D. G., Proof of the ergodic theorem, Nat Acad Proc., 17, 650-655 (1931) · JFM 57.1011.01
[6] F. Riesz,Sur la théorie ergodique, « Comm. Path. Helv. vol. 17, 221-229, (L944-45). · Zbl 0063.06500
[7] B. Forte,Sulla convergenza delle medie temporali nella teoria ergodica dei fenomeni non stazionari, « Rivista di Matematica; Università di Parma », (2), n. 1, 1960, pp. 29-44. · Zbl 0126.28302
[8] S. Kakutani,Randon ergodic theorems and Markhoff processes with a stable distribution, Proc. of the second Berk. Symp., (1951), pag. 237.
[9] Yosida; Kakutani, S., Bıkhff’s ergodic theorem and the maximal ergodic theorem, Proc. Imp. Acad. Tokyo, 15, 165-68 (1939) · Zbl 0021.41201
[10] P. R. Halmos,Measure Theory, ed. Van Nostrand Co. New York (1951).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.