Stoka, Marius I. Famiglie di varieta misurabili in uno spazio \(E_ n\). (Italian) Zbl 0104.17201 Rend. Circ. Mat. Palermo, II. Ser. 8, 192-205 (1959). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Keywords:metric geometry, convex geometry, integral geometry × Cite Format Result Cite Review PDF Full Text: DOI References: [1] R. Deltheil,Probabilités géométriques, Paris, 1926, pag. 28. [2] M. Stoka,Asupra grupurilor G, măsurabile dintr-un spatiu E n, Comunicările Acad. R. P.R., T. IX, nr. 1, 1959, pag. 7. [3] M. Stoka,Măsura unei multimi de varietăti dintr-un spatiu R n, Bull. St. Acad. R. P. R., T. VII, nr. 4, 1955, pag. 911. [4] Idem,, pag. 913. · JFM 05.0090.02 [5] M. Stoka,Geometria integrale in uno spazio euclideo E n, Boll. U. M. I., nr. 4, 1958, pag. 478. · Zbl 0088.14602 [6] M. Stoka,Géométrie intégrale dans un espace E n, Revue de Mathématiques Pures et Appliquées, T. IV, fasc. 1, 1959, pag. 156. [7] M. Stoka,Congruences de variétés mesurables dans un espace E n, Revue de Mathématiques Pures et Appliquèes, T. IV, fasc. 3, 1959, pag. 421. · Zbl 0099.38401 [8] G. Vranceanu,Leçon de Géométrie différentielle, Tome I, Bucarest, 1957, pag. 72. [9] E. Goursat,Leçons sur l’intégrations des équations aux dérivées partielles du premier ordre, Paris, 1921, pag. 71. · JFM 48.0537.05 [10] M. Stoka,Măsura unei multimi de varietăti dintr-un spatiu R n, Bul. St. Acad. R. P. R., T. VII, nr. 4, 1955, pag. 933. [11] S. Lie,Theorie der Transformationsgruppen, Vol. III, 1893, pag. 71. · JFM 25.0623.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.