×

Completely continuous endomorphisms of \(p\)-adic Banach spaces. (Endomorphismes complètement continus des espaces de Banach \(p\)-adiques.) (French) Zbl 0104.33601


MSC:

46S10 Functional analysis over fields other than \(\mathbb{R}\) or \(\mathbb{C}\) or the quaternions; non-Archimedean functional analysis
12J25 Non-Archimedean valued fields

Citations:

Zbl 0173.48601
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] H. Cartan,Séminaire E.N.S., 1953–1954.
[2] J. Dieudonné,Foundations of modern analysis, Acad. Press, 1960.
[3] B. Dwork, On the rationality of the zeta function of an algebraic variety,Amer. J. of Maths., 82, 1960, p. 631–648. · Zbl 0173.48501
[4] B. Dwork, On the zeta function of a hypersurface,Publ. Math. I.H.E.S., n0 12, 1962. · Zbl 0173.48601
[5] I. Fleischer, Sur les espaces normés non archimédiens,Proc. Acad. Amsterdam, 57, 1954, p. 165–168. · Zbl 0055.09903
[6] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires,Memoirs of the Amer. Math. Soc., no 16, 1955.
[7] A. Grothendieck, La théorie de Fredholm,Bull. Soc. Math. France, 84, 1956, p. 319–384.
[8] A. Monna, Sur les espaces normés non archimédiens:Proc. Acad. Amsterdam, 59, 1956, p. 475–483; · Zbl 0073.08701
[9] A. Monna, Sur les espaces normés non archimédiens:Proc. Acad. Amsterdam, 59, 1956, p. 494–489; · Zbl 0073.08701
[10] A. Monna, Sur les espaces normés non archimédiens:Proc. Acad. Amsterdam, 60, 1957, p. 459–467; · Zbl 0080.31404
[11] A. Monna, Sur les espaces normés non archimédiens:Proc. Acad. Amsterdam, 60, 1957, p. 468–476. · Zbl 0080.31404
[12] R. Sikorski, The determinant theory in Banach spaces,Colloquium mathematicum, 8, 1961, p. 141–198. · Zbl 0103.33202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.