×

zbMATH — the first resource for mathematics

The Minkowski-Hlawka theorem in the geometry of numbers. (English) Zbl 0105.03604
MSC:
11H06 Lattices and convex bodies (number-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. W. S. Cassels, A short proof of the Minkowski-Hlawka theorem. Proc. Cambridge Philos. Soc.49, 165–166 (1953). · Zbl 0050.04806 · doi:10.1017/S0305004100028206
[2] J. W. S.Cassels, An Introduction to the Geometry of Numbers. Berlin 1959. · Zbl 0086.26203
[3] E. Hlawka, Zur Geometrie der Zahlen. Math. Z.49, 285–312 (1944). · Zbl 0028.20606 · doi:10.1007/BF01174201
[4] A. M. Macbeath andC. A. Rogers, Siegel’s mean value theorem in the geometry of numbers. Proc. Cambridge Philos. Soc.54, 139–151 (1958). · Zbl 0080.26601 · doi:10.1017/S0305004100033302
[5] C. A. Rogers, Existence theorems in the geometry of numbers. Ann. of Math., II. Ser.48, 994–1002 (1947). · Zbl 0036.02701 · doi:10.2307/1969390
[6] W. Schmidt, Ma\(\backslash\)theorie in der Geometrie der Zahlen. Acta Math.102, 159–224 (1959). · Zbl 0215.35104 · doi:10.1007/BF02564246
[7] C. L. Siegel, A mean value theorem in the geometry of numbers. Ann. of Math., II. Ser.46, 340–347 (1945). · Zbl 0063.07011 · doi:10.2307/1969027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.