×

Acceleration techniques for iterated vector and matrix problems. (English) Zbl 0105.10302


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] P. Wynn, On a device for computing the \?_{\?}(\?_{\?}) tranformation, Math. Tables Aids Comput. 10 (1956), 91 – 96. · Zbl 0074.04601
[2] P. Wynn, The rational approximation of functions which are formally defined by a power series expansion, Math. Comput. 14 (1960), 147 – 186. · Zbl 0173.18803
[3] Daniel Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 34 (1955), 1 – 42. · Zbl 0067.28602
[4] Thomas Jan Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse Math. (6) 4 (1995), no. 3, J76 – J122 (French). Reprint of Ann. Fac. Sci. Toulouse 8 (1894), J76 – J122. · Zbl 0861.01036
[5] P. Wynn, The numerical transformation of slowly convergent series by methods of comparison. I, Chiffres 4 (1961), 177 – 210. · Zbl 0113.04601
[6] P. Wynn, On repeated application of the \?-algorithm, Chiffres 4 (1961), 19 – 22. · Zbl 0102.33301
[7] F. L. Bauer, Connections between the q-d algorithm of Rutishauser and the \( \epsilon \)-algorithm of Wynn, A technical report prepared under the sponsorship of the Deutsche Forschungsgemeinschaft, Project No. BA:106, Nov. 1957.
[8] R. J. Schmidt, On the numerical solution of linear simultaneous equations by an iterative method, Philos. Mag. (7) 32 (1941), 369 – 383. · Zbl 0061.27109
[9] E. Bodewig, A practical refutation of the iteration method for the algebraic eigenproblem, Math. Tables and Other Aids to Computation 8 (1954), 237 – 240. · Zbl 0056.11703
[10] J. Morris, An escalator process for the solution of linear simultaneous equations, Philos. Mag. (7) 37 (1946), 106 – 120. · Zbl 0061.27101
[11] E. R. Love, The electrostatic field of two equal circular co-axial conducting disks, Quart. J. Mech. Appl. Math. 2 (1949), 428 – 451. · Zbl 0040.12105
[12] L. Fox and E. T. Goodwin, The numerical solution of non-singular linear integral equations, Philos. Trans. Roy. Soc. London. Ser. A. 245 (1953), 501 – 534. · Zbl 0050.12902
[13] A. C. Aitken, “On Bernoulli’s numerical solution of algebraic equations,” Proc. Roy. Soc. Edinburgh, v. 46, 1926, p. 287. · JFM 52.0098.05
[14] F. G. Friedlander, The reflexion of sound pulses by convex parabolic reflectors, Proc. Cambridge Philos. Soc. 37 (1941), 134 – 149. · Zbl 0028.25502
[15] C. W. Clenshaw & F. W. J. Olver, “Solution of differential equations by recurrence relations,” MTAC, v. 5, 1951, p. 34. · Zbl 0045.06701
[16] L. Fox and E. T. Goodwin, Some new methods for the numerical integration of ordinary differential equations, Proc. Cambridge Philos. Soc. 45 (1949), 373 – 388. · Zbl 0033.28701
[17] L. Fox & J. C. P. Miller, “Table making for large arguments, the exponential integral,” MTAC, v. 5, 1951, p. 163. · Zbl 0044.33301
[18] R. A. Buckingham, Numerical Methods, Pitman, London, 1957, p. 504-505.
[19] D. R. Hartree, Numerical analysis, Oxford, at the Clarendon Press, 1952. · Zbl 0049.35905
[20] P. Wynn, Singular rules for certain non-linear algorithms, Nordisk Tidskr. Informations-Behandling 3 (1963), 175 – 195. · Zbl 0123.11101
[21] Robert Sauer, Einführung in die theoretische Gasdynamik, Springer-Verlag, Berlin, Göttingen, Heidelberg, 1951 (German). 2d ed. · Zbl 0028.02603
[22] C. Lanczos, Linear systems in self-adjoint form, Amer. Math. Monthly 65 (1958), 665 – 679. · Zbl 0083.00604
[23] P. Wynn, Note on the solution of a certain boundary-value problem, Nordisk Tidskr. Informations-Behandling 2 (1962), 61 – 64. · Zbl 0105.32103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.