×

zbMATH — the first resource for mathematics

FDEXTR, a program for the finite-difference solution of the coupled-channel Schrödinger equation using Richardson extrapolation. (English) Zbl 0877.65057
Summary: A FORTRAN-77 program is presented which solves the Sturm-Liouville problem for a system of coupled second-order differential equations by the finite difference method of the second order using the iterative Richardson extrapolation of the difference eigensolutions on a sequence of doubly condensed meshes. The same extrapolational procedure and error estimations are applied to the eigenvalues and eigenfunctions. Zero-valued (Dirichlet) or zero-gradient (Neumann) boundary conditions are considered.

MSC:
65L15 Numerical solution of eigenvalue problems involving ordinary differential equations
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
65L12 Finite difference and finite volume methods for ordinary differential equations
34L15 Eigenvalues, estimation of eigenvalues, upper and lower bounds of ordinary differential operators
Software:
FDEXTR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abrashkevich, A.G.; Abrashkevich, D.G., Comput. phys. commun., xx, (1994), see the preceeding paper · Zbl 0877.65057
[2] Marchuk, G.I.; Shaidurov, V.V., Difference methods and their extrapolations, (1983), Springer, Heidelberg Berlin · Zbl 0511.65076
[3] Håvie, T.; Håvie, T., Bit, Bit, 17, 418, (1977)
[4] Truhlar, D.G., J. comput. phys., 10, 123, (1972)
[5] ()
[6] Fano, U.; Rau, A.R.P., Atomic collisions and spectra, (1986), Academic Press New York
[7] Abrashkevich, A.G.; Vinitsky, S.I.; Kaschiev, M.S.; Puzynin, I.V.; Abrashkevich, A.G.; Vinitsky, S.I.; Kaschiev, M.S.; Puzynin, I.V.; Abrashkevich, A.G.; Abrashkevich, D.G.; Kaschiev, M.S.; Puzynin, I.V.; Vinitsky, S.I.; Abrashkevich, A.G.; Abrashkevich, D.G.; Puzynin, I.V.; Vinitsky, S.I.; Abrashkevich, A.G.; Abrashkevich, D.G.; Puzynin, I.V.; Vinitsky, S.I.; Abrashkevich, A.G.; Abrashkevich, D.G.; Kaschiev, M.S.; Puzynin, I.V.; Vinitsky, S.I., Yadern. phys., Sov. J. nucl. phys., J. phys. B, J. phys. B, J. phys. B, Phys. rev. A, 45, 5274, (1992) · Zbl 0976.65075
[8] ()
[9] ()
[10] Tennyson, J.; Carter, S.; Handy, H.C., Comput. rep., Comput. rep., 5, 117, (1986)
[11] Bačić, Z.; Light, J.C., Ann. rev. phys chem., 40, 469, (1989)
[12] Faifman, M.P.; Menshikov, L.I.; Ponomarev, L.I.; Puzynin, I.V.; Puzynina, T.P.; Strizh, T.A., Z. phys. D, 2, 79, (1986)
[13] Puzynin, I.V.; Vinitsky, S.I.; Kamimura, M.; Markushin, V.E., Muon catalyzed fusion, Muon catalyzed fusion, Muon catalyzed fusion, 3, 395, (1988)
[14] Cohen, J.S.; Struensee, M.S., Phys. rev. A, 43, 3460, (1991)
[15] Bathe, K.-J., Finite element procedures in engineering analysis, (1982), Prentice-Hall Englewood Cliffs, NJ
[16] Richardson, L.F.; Richardson, L.F., Phylos. trans. roy. soc. London, ser. A, Phylos. trans. roy. soc. London, ser. A, 226, 299, (1927)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.