×

zbMATH — the first resource for mathematics

Free topological groups. (English) Zbl 0106.02604

Keywords:
group theory
PDF BibTeX Cite
Full Text: DOI
References:
[1] C. Chevalley, Theory of Lie groups, Princeton, 1946. · Zbl 0063.00842
[2] L. E. Dickson, Modern algebraic theories, New York, 1930. · JFM 52.0094.01
[3] I. Gelfand and G. Šilov, Über verschiedene Methoden der Einführung der Topologie in die Menge der maximalen Ideale eines normierten Ringes, Rec. Math. [Mat. Sbornik] N. S. 9 (51) (1941), 25 – 39 (German, with Russian summary). · JFM 67.0407.01
[4] M. I. Graev, Free topological groups, Izvestiya Akad. Nauk SSSR. Ser. Mat. 12 (1948), 279 – 324 (Russian).
[5] J. de Groot and T. Dekker, Free subgroups of the orthogonal group, Compositio Math. 12 (1954), 134 – 136. · Zbl 0057.26102
[6] F. Hausdorff, Grundzüge der Mengenlehre, Leipzig, 1914. · JFM 45.0123.01
[7] Shizuo Kakutani, Free topological groups and infinite direct product topological groups, Proc. Imp. Acad. Tokyo 20 (1944), 595 – 598. · Zbl 0063.03105
[8] John L. Kelley, General topology, D. Van Nostrand Company, Inc., Toronto-New York-London, 1955. · Zbl 0066.16604
[9] A. Kurosh, The theory of groups, 2d edition, New York, 1955. · Zbl 0068.26104
[10] Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. · Zbl 0052.11701
[11] Wilhelm Maak, Fastperiodische Funktionen, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band LXI, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1950 (German). · Zbl 0030.15501
[12] A. A. Markov, O svobodnich topologičeskich gruppach, Izv. Akad. Nauk SSSR. Ser. Mat. vol. 9 (1945) pp. 3-64; Amer. Math. Soc. Translations Series 1, no. 30,1950, pp. 11-88.
[13] Tadasi Nakayama, Note on free topological groups, Proc. Imp. Acad. Tokyo 19 (1943), 471 – 475. · Zbl 0063.05899
[14] A. Weil, L’intégration dans les groupes topologiques et ses applications, Paris, 1938.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.