×

Functions whose derivative has a positive real part. (English) Zbl 0106.04805


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2) 17 (1915), no. 1, 12 – 22. · JFM 45.0672.02
[2] F. Herzog and G. Piranian, On the univalence of functions whose derivative has a positive real part, Proc. Amer. Math. Soc. 2 (1951), 625 – 633. · Zbl 0043.08101
[3] Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169 – 185 (1953). · Zbl 0048.31101
[4] J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1925), 481-519. · JFM 51.0247.03
[5] Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952. · Zbl 0048.31503
[6] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. (1) 2 (1934-1935), 129-155. · Zbl 0010.26305
[7] G. Pólya und G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Springer, Berlin, 1954. · Zbl 0055.27802
[8] G. Szegö, Zur Theorie der schlichten Abbildungen, Math. Ann. 100 (1928), no. 1, 188 – 211 (German). · JFM 54.0336.02
[9] S. R. Tims, A theorem on functions schlicht in convex domains, Proc. London Math. Soc. (3) 1 (1951), 200 – 205. · Zbl 0043.08001
[10] Stefan E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310 – 340. · Zbl 0014.26707
[11] J. Wolff, L’integrale d’une function holomorphe et à partie réelle positive dans un demiplan est univalente, C. R. Acad. Sci. Paris 198 (1934), 1209-1210. · Zbl 0008.36301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.