×

Compactness of integral operators in Banach function spaces. (English) Zbl 0106.30804


PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Andô, T.: On compactness of integral operators. Proc. Acad. Sci. Amsterdam65, 235-239 (1962). · Zbl 0100.11201
[2] Ellis, H. W., andI. Halperin: Function spaces determined by a levelling length function. Canad. J. Math.5, 576-592 (1953). · Zbl 0051.08701
[3] Lorentz, G. G., andD. G. Wertheim: Representation of linear functionals on Köthe spaces. Canad. J. Math.5, 568-575 (1953). · Zbl 0051.09002
[4] Halperin, I.: Function spaces. Canad. J. Math.5, 273-288 (1953). · Zbl 0052.11303
[5] Lorentz, G. G.: Some new functional spaces. Ann. Math.51, 37-55 (1950). · Zbl 0035.35602
[6] ?? On the theory of spaces ?. Pacific J. Math.1, 411-429 (1950). · Zbl 0040.37801
[7] Dieudonné, J.: Sur les espaces de Köthe. J. d’Anal. Math.1, 81-115 (1951). · Zbl 0044.11703
[8] Luxemburg, W. A. J.: Banach function spaces (thesis Delft). Assen (Netherlands), 1955. · Zbl 0068.09204
[9] ?? andA. C. Zaanen: Some remarks on Banach function spaces. Proc. Acad. Sci. Amsterdam59, 110-119 (1956). · Zbl 0072.32301
[10] Schäffer, J. J.: Function spaces with translations. Math. Ann.137, 209-262 (1959). · Zbl 0089.09402
[11] Ellis, H. W.: On theM T* and ?-conjugates ofL ? spaces. Canad. J. Math.10, 381-391 (1958). · Zbl 0095.09101
[12] Gould, G. G.: On a class of integration spaces. J. London Math. Soc.34, 161-172 (1959). · Zbl 0099.09503
[13] Korenblyum, B. I., S. G. Krein andB. Ya. Levin: On certain nonlinear questions of the theory of singular integrals: Doklady Akad. Nauk SSSR62, 17-20 (1948).
[14] Halperin, I., andW. A. J. Luxemburg: Reflexivity of the length function. Proc. Am. Math. Soc.8, 496-499 (1957). · Zbl 0078.10603
[15] Halmos, P. R.: Measure theory. New York: 1950. · Zbl 0040.16802
[16] Zaanen, A. C.: An introduction to the theory of integration. Amsterdam-New York: 1958. · Zbl 0081.27703
[17] – Linear Analysis. Amsterdam-New York: 1953. · Zbl 0053.25601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.