×

zbMATH — the first resource for mathematics

Pseudo-Hamiltonian mechanics. (English) Zbl 0106.37402

Keywords:
mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Whittaker, E. T.: Treatise on Analytical Dynamics. Cambridge 1927. · JFM 53.0732.02
[2] Duffin, R. J.: A minimax theory for overdamped networks. J. Rational Mechanics and Analysis 4, 221–233 (1955). · Zbl 0068.20904
[3] Duffin, R. J.: The Rayleigh-Ritz method for dissipative and gyroscopic systems. Quarterly of Applied Mathematics 18, 215–221 (1960). · Zbl 0102.39103 · doi:10.1090/qam/122048
[4] Carath√©odory, C.: Variationsrechnung. Berlin: Teubner 1935. · JFM 61.0547.01
[5] Bateman, H.: Dynamics. Encyclopedia Britannica 1960.
[6] Rayleigh: The Theory of Sound, vol. 1, pp. 102–104. New York: Dover.
[7] Synge, J. L.: Classical Dynamics. Handbuch der Physik, Bd. 3, Teil 1. Berlin: Springer 1960.
[8] Weyl, H.: The Classical Groups. Princeton: University Press 1939. · JFM 65.0058.02
[9] Artin, E.: Geometric Algebra, chap. III. New York: Interscience 1957. · Zbl 0077.02101
[10] Howitt, N.: Group theory and the electric circuit. Phys. Review 37, 1583–1595 (1931). · Zbl 0002.22104 · doi:10.1103/PhysRev.37.1583
[11] Duffin, R. J., & Elsa Keitzer: Formulae relating some equivalent networks. J. of Mathematics and Physics 35, 72–82 (1956). · Zbl 0071.41501 · doi:10.1002/sapm195635172
[12] Khinchin, A. I.: Mathematical Foundations of Statistical Mechanics. New York: Dover 1949. · Zbl 0037.41102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.