×

zbMATH — the first resource for mathematics

Classes of predictably computable functions. (English) Zbl 0107.01001

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Martin Davis, Computability and unsolvability, McGraw-Hill Series in Information Processing and Computers, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1958. · Zbl 0080.00902
[2] Calvin C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc. 98 (1961), 21 – 51. · Zbl 0111.01102
[3] Andrej Grzegorczyk, Some classes of recursive functions, Rozprawy Matematyczne, Warsaw, 1953. · Zbl 0052.24902
[4] Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co., Inc., New York, N. Y., 1952. · Zbl 0047.00703
[5] John Myhill, Linear bounded automata, WADD Technical Note, 60-165, Univ. Pennsylvania Report Nr. 60-22, June 1960.
[6] Rózsa Péter, Rekursive funktionen, Akadémiai Kiadó, Budapest, 1957, pp. 76-86. · Zbl 0077.01303
[7] W. V. Quine, Concatenation as a basis for arithmetic, J. Symbolic Logic 11 (1946), 105 – 114. · Zbl 0063.06362 · doi:10.2307/2268308 · doi.org
[8] Raymond M. Smullyan, Theory of formal systems, Annals of Mathematics Studies, No. 47, Princeton University Press, Princeton, N.J., 1961. · Zbl 0097.24503
[9] Alfred Tarski, A decision method for elementary algebra and geometry, Project RAND Report R-109, The RAND Corporation, Santa Monica, Calif., 1957. · Zbl 0035.00602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.