On Korn’s inequality. (English) Zbl 0107.31105

Full Text: DOI


[1] Bernstein, B., & R. Toupin: Korn inequalities for the sphere and for the circle. Arch. Rational Mech. Anal. 6, No. 1, 51–64 (1960). · Zbl 0094.30001 · doi:10.1007/BF00276153
[2] Courant, R., & D. Hilbert: Methoden der mathematischen Physik, Vol. 2. Berlin: Springer 1937. · JFM 63.0449.05
[3] Friedrichs, K. O.: On the boundary-value problems of the theory of elasticity and Korn’s inequality. Ann. of Math. 48, 441–471 (1947). · Zbl 0029.17002 · doi:10.2307/1969180
[4] Korn, A.: Solution générale du problème d’équilibre dans la théorie de l’élasticité, dans le case où les efforts sont données à la surface. Annales de la faculté des sciences de Toulouse, ser. 2, 10, 165–269 (1908). · JFM 39.0853.03
[5] Korn, A.: Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bulletin Internationale, Cracovie Akademie Umiejet, Classe des sciences mathématiques et naturelles 1909, pp. 705–724. · JFM 40.0884.02
[6] Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity. 1927.
[7] Payne, L. E., & H. F. Weinberger: New bounds in harmonic and biharmonic problems. J. Math. Phys. 33, 291–307 (1955). · Zbl 0064.09903
[8] Payne, L. E., & H. F. Weinberger: New bounds for solutions of second order elliptic partial differential equations. Pacific J. Math. 8, No. 3, 551–573 (1958). · Zbl 0093.10901
[9] Synge, J. L., & A. Schild: Tensor Calculus. Toronto 1949. · Zbl 0038.32301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.