×

zbMATH — the first resource for mathematics

On the linear theory of viscoelasticity. (English) Zbl 0107.41007

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boltzmann, L.: Zur Theorie der elastischen Nachwirkung. Sitzungsberichte der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften 70, 2, 275 (1874). · JFM 07.0663.03
[2] Volterra, V.: Sulle equazioni integro-differenziali della teoria dell’elasticità. Atti della Reale Accademia dei Lincei 18, 2, 295 (1909). · JFM 40.0870.01
[3] Gross, B.: Mathematical Structure of the Theories of Viscoelasticity. Paris: Hermann & Co. 1953. · Zbl 0052.20901
[4] Staverman, A. J., & F. Schwarzl: Linear Deformation Behavior of High Polymers, Chapter 1 in: Die Physik der Hochpolymeren, edited by H. A. Stuart, Vol. 4. Berlin-Göttingen-Heidelberg: Springer 1956.
[5] Freudenthal, A. M., & Hilda Geiringer: The Mathematical Theories of the Inelastic Continuum, in: Encyclopedia of Physics, edited by S. Flügge, Vol. 6. Berlin-Göttingen-Heidelberg: Springer 1958.
[6] Bland, D. R.: The Theory of Linear Viscoelasticity. New York: Pergamon Press 1960. · Zbl 0108.38501
[7] Love, E. R.: Linear superposition in visco-elasticity and theories of delayed effects. Australian J. of Physics 9, 1, 1 (1956). · Zbl 0071.39904
[8] König, H., & J. Meixner: Lineare Systeme und lineare Transformationen. Mathematische Nachrichten 19, 256 (1958). · Zbl 0089.09303
[9] Biot, M. A.: Linear Thermodynamics and the Mechanics of Solids. Proceedings, Third U.S. National Congress of Applied Mechanics, The American Society of Mechanical Engineers, New York, 1958.
[10] Coleman, B. D., & W. Noll: Foundations of linear viscoelasticity. Reviews of Modern Physics 33, 2, 239 (1961). · Zbl 0103.40804
[11] Alfrey, T.: Non-homogeneous stresses in visco-elastic media. Quarterly of Applied Mathematics 2, 2, 113 (1944). · Zbl 0063.00053
[12] Read, W. T.: Stress analysis for compressible viscoelastic materials. J. of Applied Physics 21, 7, 671 (1950). · Zbl 0041.53803
[13] Lee, E. H.: Stress analysis in viscoelastic bodies. Quarterly of Applied Mathematics 13, 2, 183 (1955). · Zbl 0066.18901
[14] Lee, E. H.: Viscoelastic Stress Analysis. Proceedings, First Symposium on Naval Structural Mechanics. New York; Pergamon Press 1960. · Zbl 0114.16106
[15] Hu Hai-Chang: On reciprocal theorems in the dynamics of elastic bodies and some applications. Scientia Sinica 7, 2, 137 (1958). · Zbl 0080.17606
[16] Volterra, V.: Sulle equazioni integro-differenziali. Atti della Reale Accademia dei Lincei 18, 1, 167 (1909). · JFM 40.0399.02
[17] Kellogg, O. D.: Foundations of Potential Theory. Berlin: Springer 1929. · JFM 55.0282.01
[18] Mikusinski, J.: Operational Calculus. New York: Pergamon Press 1959. · Zbl 0151.18303
[19] Apostol, T.: Mathematical Analysis. London: Addison-Wesley Publishing Company 1960.
[20] Smithies, F.: Integral Equations. London: Cambridge University Press 1958. · Zbl 0082.31901
[21] Riesz, F., & B. Sz.-Nagy: Functional Analysis, translated by Leo F. Boron. New York: Frederick Ungar Publishing Company 1955.
[22] Natanson, I. P.: Theory of Functions of a Real Variable, translated by Leo F. Boron. New York: Frederick Ungar Publishing Company 1955. · Zbl 0064.29102
[23] Temple, G.: Cartesian Tensors. New York: John Wiley & Sons 1960. · Zbl 0091.33804
[24] Boley, B. A., & J. H. Weiner: Theory of thermal stresses. New York: John Wiley & Sons 1960. · Zbl 0095.18407
[25] Corneliussen, A. R., & E. H. Lee: Stress distribution analysis for linear viscoelastic materials, Report No. 2, Contract No. DA-19-020-ORD-4750, Brown University, December 1958. To appear in Proceedings, Symposium on Creep in Structures, International Union of Theoretical and Applied Mechanics. Berlin-Göttingen-Heidelberg: Springer 1962.
[26] Sokolinikoff, I. S.: Mathematical Theory of Elasticity, Second Edition. New York: McGraw-Hill Book Company 1956.
[27] Duffin, R. J.: Analytic continuation in elasticity. J. of Rational Mechanics and Analysis 5, 6, 939 (1956). · Zbl 0072.18901
[28] Friedrichs, K. O.: On the first boundary value problem of the theory of elasticity and Korn’s inequality. Annals of Mathematics 48, 2, 441 (1947). · Zbl 0029.17002
[29] Frank, Ph., & R. v. Mises: Die Differential-und Integralgleichungen der Mechanik und Physik, Vol. 1 New York: Mary S. Rosenberg 1943. · Zbl 0061.16603
[30] Gurtin, M. E., & E Sternberg: Theorems in linear elastostatics for exterior domains. Arch. Rational Mech. Anal. 8, 2, 99 (1961). · Zbl 0101.17001
[31] Breuer, S., & E. T. Onat: On uniqueness in linear viscoelasticity. Quarterly of Applied Mathematics 19, 4, 355 (1962).
[32] Gurtin, M. E., & E. Sternberg: On the first boundary-value problem of linear elastostatics. Arch. Rational Mech. Anal. 6, 3, 177 (1960). · Zbl 0094.36901
[33] Widder, D. V.: The Laplace Transform. Princeton: Princeton University Press 1941. · Zbl 0063.08245
[34] Goldberg, R. R.: Fourier Transforms. London: Cambridge University Press 1961. · Zbl 0095.08601
[35] Loève, M.: Probability Theory, Second Edition. New York: D. van Nostrand Company 1960. · Zbl 0095.12201
[36] Boa-Teh Chu: Stability criteria for isotropic linear viscoelastic materials. Technical Report No. 26, Contract Nonr-562(20), Brown University, November 1961.
[37] Galerkin, B.: Contribution à la solution général du problème de la théorie de l’élasticité dans le cas de trois dimensions. Comptes Rendus, Académie des Sciences, Paris 190, 17, 1047 (1930). · JFM 56.0700.07
[38] Papkovich, P. F.: The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions (in Russian). · Zbl 0024.13401
[39] Izvestiya Akademii Nauk SSSR, Physics-Mathematics Series 10, 1425 (1932).
[40] Neuber, H.: Ein neuer Ansatz zur Lösung räumlicher Probleme der Elastizitätstheorie. Z. für angewandte Mathematik und Mechanik 14, 203 (1934). · JFM 60.1351.02
[41] Courant, R.: Partial Differential Equations, Vol. 2 of Methods of Mathematical Physics by R. Courant & D. Hilbert. New York: Interscience Publishers 1962. · Zbl 0099.29504
[42] Sternberg, E., & M. E. Gurtin: On the completeness of certain stress functions in the linear theory of elasticity. Technical Report No. 12, Contract Nonr-562(25), Brown University, July 1961. To appear in the Proceedings of the Fourth U. S. National Congress of Applied Mechanics. · Zbl 0101.17001
[43] Elder, A. S.: Stress function theory for linearly viscoelastic solids. Memorandum Report No. 1282, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, June 1960.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.