×

Separability of local and regional dynamics in metapopulations. (English) Zbl 0881.92031

Summary: Many models of metapopulations describe the regional dynamics of local extinction and recolonization separately from the local dynamics within the habitat patches. A strict justification of this approach has not been given yet. We systematically derive the processes of extinction and colonization from the local dynamics and the dispersal of the individuals. We show that local and regional dynamics can be described separately only if the variances of environmental fluctuations and the rates of dispersal (emigration and immigration) are below particular bounds. If environmental fluctuations and dispersal satisfy these conditions the local dynamics have a much faster time scale than the regional dynamics and extinction and recolonization can each be described by a single rate which depends on the parameters of the local dynamics and dispersal.

MSC:

92D40 Ecology

Software:

VORTEX
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akçakaya, H.R.; Ginzburg, L.R., Ecological risk analysis for single and multiple populations, Species conservation: A population-biological approach, (1991), Birkhäuser Basel
[2] Burgman, M.A.; Ferson, S.; Akçakaya, H.R., Risk assessment in conservation biology, (1993), Chapman & Hall London/ Melbourne/New York
[3] Burkey, T.V., Extinction in nature reserves: the effect of fragmentation and the importance of migration between reserve fragments, Oikos, 55, 75-81, (1989)
[4] Day, J.R.; Possingham, H.P., A stochastic metapopulation model with variability in patch size and position, Theor. popul. biol., 48, 333-360, (1995) · Zbl 0840.92025
[5] den Boer, P.J., Spreading of risk and stabilization of animal numbers, Acta biotheoretica, 18, 165-194, (1968)
[6] R. Durrett, 1991, Stochastic models of growth and competition, Proceedings of the International Congress of Mathematicians, Kyoto, 1990, I. Satake, Vol. 2, Springer-Verlag, Berlin/New York · Zbl 0744.92030
[7] Feller, W., An introduction to probability theory and its applications, (1957), Wiley New York · Zbl 0155.23101
[8] Foley, P., Predicting extinction times from environmental stochasticity and carrying capacity, Cons. biol., 8, 124-137, (1994)
[9] Gardiner, C.W., Handbook of stochastic methods, (1983), Springer-Verlag Berlin/New York · Zbl 0862.60050
[10] Gilpin, M.E., Extinction of finite metapopulations in correlated environments, ()
[11] Gilpin, M.E.; Hanski, I., Metapopulation dynamics: empirical and theoretical investigations, (1991), Academic Press London
[12] Goel, N.S.; Richter-Dyn, N., Stochastic models in biology, (1974), Academic Press New York
[13] Goodman, D., The demography of chance extinction, ()
[14] Goodman, D., Consideration of stochastic demography in the design and management of biological reserves, Nat. res. mod., 1, 205-234, (1987) · Zbl 0850.92075
[15] Grimm, V.; Schmidt, E.; Wissel, C., On the application of stability concepts in ecology, Ecol. mod., 63, 143-161, (1992)
[16] Gyllenberg, M.; Hanski, I., Single-species metapopulation dynamics: A structured model, Theor. popul. biol., 42, 35-61, (1992) · Zbl 0758.92011
[17] Gyllenberg, M.; Sylvestrov, D.S., Quasi-stationary distributions of a stochastic metapopulation model, J. math. biol., 33, 35-70, (1994) · Zbl 0816.92016
[18] Hanski, I., Single-species spatial dynamics may contribute to longterm rarity and commonness, Ecology, 66, 335-343, (1985)
[19] Hanski, I., Single-species metapopulation dynamics: concepts, models and observations, ()
[20] Hanski, I., A practical model of metapopulation dynamics, J. anim. ecol., 63, 151-162, (1994)
[21] Hanski, I.; Gilpin, M.E., Metapopulation dynamics: brief history and conceptual domain, ()
[22] Hanski, I.; Gyllenberg, M., Two general metapopulation models and the core – satellite hypothesis, Am. nat., 142, 17-41, (1993)
[23] Hanski, I.; Zhang, D.-Y., Migration, metadynamics and fugitive co-existence, J. theor. biol., 163, 491-504, (1993)
[24] Harrison, S.; Quinn, J.F., Correlated environments and the persistence of metapopulations, Oikos, 56, 293-298, (1989)
[25] Karlin, S.; Taylor, H., A first course in stochastic processes, (1975), Academic Press New York
[26] Keiding, N., Extinction anal exponential growth in random environments, Theor. popul. biol., 8, 49-63, (1975) · Zbl 0311.92019
[27] Lamberson, R.H.; McKelvey, K.; Noon, B.R.; Voss, C., A dynamic analysis of northern spotted owl viability in a fragmented forest landscape, Cons. biol., 6, 505-512, (1992)
[28] Lande, R., Risks of population extinction from demographic and environmental stochasticity and random catastrophes, Am. nat., 142, 911-927, (1993)
[29] Leigh, E.G., The average life time of a population in a varying environment, J. theor. biol., 90, 213-239, (1981)
[30] Levins, R., Some demographic and genetic consequences of environmental heterogeneity for biology control, Bull. entomol. soc. am., 15, 237-240, (1969)
[31] Levins, R., Extinction, () · Zbl 0241.92017
[32] Lindenmayer, D.B.; Burgman, M.A.; Akçakaya, H.R.; Lacy, R.C.; Possingham, H.P., A review of the generic computer programs ALEX, RAMAS/space and VORTEX for modelling the viability of wildlife metapopulations, Ecol. mod., 82, 161-174, (1995)
[33] McCarthy, M.A., Extinction dynamics of the helmeted honeyeater: effects of demography, stochasticity, inbreeding and spatial structure, Ecol. mod., 85, 151-163, (1996)
[34] Ludwig, D., Stochastic population theories, Lecture notes in biomathematics, Vol. 3, (1974), Springer-Verlag Berlin/New York
[35] MacArthur, R.H.; Wilson, E.O., The theory of island biography, (1967), Princeton Univ. Press Princeton
[36] Matsuo, K., Relaxation mode analysis of nonlinear birth and death processes, J. stat. phys., 16, 169-195, (1977)
[37] May, R.N., Stability and complexity in model ecosystems, (1973), Princeton Univ. Press Princeton
[38] Nisbet, R.M.; Gurney, W.S.C., Modelling fluctuating populations, (1982), Wiley Chichester · Zbl 0593.92013
[39] Pulliam, H.R.; Dunning, J.B., Spatially explicit population models, Ecol. appl., 5, (1995)
[40] Quinn, J.F.; Hastings, A., Extinction in subdivided habitats, Cons. biol., 1, 198-208, (1987)
[41] Renshaw, E., A survey of stepping-stone models in population dynamics, Adv. appl. prob., 18, 581-627, (1986) · Zbl 0607.60078
[42] Ricciardi, L.M., Stochastic population theory: birth and death processes, () · Zbl 0446.92004
[43] Sjögren, P., Extinction and isolation in metapopulations: the case of the pool frog (rana lessonae, ()
[44] Stelter, C.; Reich, M; Grimm, V.; Wissel, C., Ein modell zur dynamik einer metapopulation vonbryodema tuberculata, Verh. ges. ökol., 23, 383-390, (1994)
[45] Verboom, J.; Lankester, K.; Metz, J.A.J., Linking local and regional dynamics in stochastic metapopulation models, ()
[46] Wilkinson, J.H., The algebraic eigenvalue problem, (1965), Clarendon Oxford · Zbl 0258.65037
[47] Wissel, C., Metastability, a consequence of stochastics in multiple stable population dynamics, Theor. popul. biol., 36, 296-310, (1989) · Zbl 0681.92018
[48] Wissel, C.; Stöcker, S., Extinction of populations by random influences, Theor. popul. biol., 39, 315-328, (1991) · Zbl 0725.92024
[49] Wissel, C.; Stephan, T.; Zaschke, S.-H., Modelling extinction and survival of small populations, ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.