×

Sopra un teorema di Kodaira. (Italian) Zbl 0108.16604


PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] Y. Akizuki - S. Nakano , Note on Kodaira-Spencer’s proof of Lefschetz theorems , Proo. of the Jap. Acad. , 30 ( 1954 ), 266 - 272 . MR 66694 | Zbl 0059.14701 · Zbl 0059.14701
[2] A. Borel - F. Hirzebruch , Characteristic classes and homogeneous spaces, II , Am. J. Math. , 81 ( 1959 ), 315 - 381 . MR 110105 | Zbl 0097.36401 · Zbl 0097.36401
[3] N. Bourbaki , Espaces vectoriels topologiques , Hermann , Paris . · Zbl 0042.35302
[4] E. Calabi - E. Vesentini , On compact, locally symmetric Kähler manifolds , Ann. of Math. , 71 , ( 1960 ), 472 - 507 . MR 111058 | Zbl 0100.36002 · Zbl 0100.36002
[5] K.O. Friedrichs , Differential forms on Riemanniian manifolds , Comm. Pnre Appl. Math. , 8 ( 1955 ), 551 - 590 . MR 87763 | Zbl 0066.07504 · Zbl 0066.07504
[6] F. Hirzebruch , Neue topologische Methoden in der algebraischen Geometrie , Springer , Berlin , 1956 . MR 82174 | Zbl 0070.16302 · Zbl 0070.16302
[7] K. Kodaira , On a differential geometric method in the theory of analytic stacks , Proc. Nat. Acad. Sci. USA , 39 ( 1953 ), 1268 - 1273 . MR 66693 | Zbl 0053.11701 · Zbl 0053.11701
[8] K. Kodaira , On Kähler varieties of restricted type , Ann. of Math. , 60 ( 1954 ) 28 - 48 . MR 68871 | Zbl 0057.14102 · Zbl 0057.14102
[9] E. Magenes - G. Stampacchia , I problemi al contorno per le equazioni differenziali di tipo ellittico , Ann. Sc. Norm. Sup. Pisa , ( 3 ) 12 ( 1958 ), 247 - 358 . Numdam | MR 123818 | Zbl 0082.09601 · Zbl 0082.09601
[10] G. De Rham , Variétés différentiables , Hermann , Paris , 1955 . Zbl 0065.32401 · Zbl 0065.32401
[11] A. Weil , Introduction à l’étude des variétés kählériennes , Hermann , Paris , 1958 . MR 111056 | Zbl 0137.41103 · Zbl 0137.41103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.