×

Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme. (English) Zbl 0900.70010

We propose a method which conjointly takes advantage of the coordinate partitioning method and of the suitability of an implicit integration scheme regarding multibody systems containing flexible bodies. The priority underlying this contribution is the resolution of the constraints during the simulation.

MSC:

70-08 Computational methods for problems pertaining to mechanics of particles and systems
70E15 Free motion of a rigid body
74H45 Vibrations in dynamical problems in solid mechanics

Software:

Neweul; MESA VERDE
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Eichberger, A.; Führer, C.; Schwertassek, R., The benefits of parallel multibody simulation and its application to vehicle dynamics advanced multibody system dynamics, (), 107-126
[2] Wittenburg, J., Dynamics of systems of rigid bodies, (1977), Teubner Stuttgart · Zbl 0363.70004
[3] Kane, Th.R.; Levinson, D.A., Dynamics: theory and applications, (1985), McGraw-Hill New York, NY
[4] Roberson, R.E.; Schwertassek, R., Dynamics of multibody systems, (1988), Springer-Verlag Berlin · Zbl 0556.70008
[5] Haug, E.J., Computer aided kinematics and dynamics of mechanical systems, (1989), Allyn and Bacon Boston, MA
[6] Nikravesh, P.E., Computer aided analysis of mechanical systems, (1988), Prentice-Hall London
[7] Andrzejewski, Th.; Bock, H.G.; Eich, E.; von Schwerin, R., Recent advances in the numerical integration of multibody systems advanced multibody system dynamics, (), 49-66
[8] ()
[9] Wittenburg, J.; Wolz, U.; Schmidt, A., {\scmesa-verde}—A general purpose program package tor symbolical dynamics simulations of multibody systems, (), 341-360
[10] Maes, P.; Samin, J.C.; Willems, P.Y., Robotran, (), 246-264
[11] Schielen, W., {\scneweul}—software for the generation of symbolical equations of motion, (), 181-202
[12] Bae, D.S.; Haug, E.J.; Kuhl, J.G., A recursive formulation for constrained mechanical systems. part 3: parallel processor implementation, Mech. struct. Mach., 16, 2, (1988)
[13] Fisette, P.; Samin, J.C., Symbolic generation of large multibody system dynamic equations using a new semi-explicit Newton-Euler recursive scheme, Arch. appl. mech., 66, 187-199, (1996) · Zbl 0844.70001
[14] Fisette, P., Génération symbolique des équations du mouvement de systèmes multicorps et application dans le domaine ferroviaire, ()
[15] Wehage, R.A.; Haug, E.J., Generalized coordinate partitioning for dimension reduction in analysis of constrained dynamic systems, J. mech. des., 134, 247-255, (1982)
[16] Newmark, N.M., A method of computation for structural dynamics, J. engrg. mech. div., ASCE, 67-94, (1959)
[17] Petzold, L., Differential/algebraic equations are not ODE’s, SIAM J. sci. stat. comput., 3, 3, 367-384, (1982) · Zbl 0482.65041
[18] Haug, J.E.; Yen, J., Generalized coordinate partitioning methods for numerical integration of differential/algebraic equations of dynamics, (), 97-114 · Zbl 0769.65040
[19] Baumgarte, J., Stabilization of constraints and integrals of motion, Comput. methods appl. mech. engrg., 1, 1-16, (1972) · Zbl 0262.70017
[20] Petzold, L., Methods and softwares for differential/algebraic systems, (), 127-140 · Zbl 0763.65057
[21] Führer, C.; Leimkuhler, B., A new class of generalized inverses for the solution of discretized Euler-Lagrange equations, (), 143-154 · Zbl 0778.70001
[22] Fisette, P.; Samin, J.C., A new wheel/rail contact model for independent wheels, Arch. appl. mech., 64, 180-191, (1994) · Zbl 0800.70039
[23] Géradin, M.; Cardona, A., Numerical integration of second-order differential-algebraic systems in flexible mechanism dynamics, (), 233-284 · Zbl 0874.73072
[24] Géradin, M.; Rixen, D., Théorie des vibrations: application à la dynamique des structures, (1993), Masson Paris
[25] Maes, P.; Samin, J.C.; Willems, P.Y., Autodyn, (), 225-245
[26] Luh, J.Y.S.; Walker, N.W.; Paul, R.P.C., On-line computational scheme for mechanical manipulators, J. dyn. sys. meas. contr., 102, 69-76, (1980)
[27] Schwertassek, R.; Rulka, W., Aspects of efficient and reliable multibody systems simulation, (), 55-96 · Zbl 0800.93922
[28] Garg, V.K.; Dukkipati, R.V., Dynamics of railway vehicle systems, (1984), Academic Press Toronto, Ont
[29] Verlinden, O., Simulation du comportement dynamique de systèmes multicorps flexibles comportant des membrures de forme complexe, ()
[30] Jahnke, M.; Popp, K.; Dirr, B., Approximate analysis of flexible parts in multibody systems using the finite element method, (), 237-256 · Zbl 0798.73033
[31] Huston, R.L.; Wang, Y., Flexibility effects in multibody systems, (), 351-376 · Zbl 0874.73036
[32] Kane, T.R.; Ryan, P.R.; Banerjee, A.K., Dynamics of a cantilever beam attached to a moving base, J. guid. control dyn., 10, 139-151, (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.