×

zbMATH — the first resource for mathematics

Cohomologie-Operationen und charakteristische Klassen. (Cohomology operations and characteristic classes). (German) Zbl 0109.16002

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Adams, J. F.: On formulae of Thom and Wu. (erscheint demnächst).
[2] ?: On Chern characters and the structure of the unitary group. Proc. Cambr. Phil. Soc.57, 189-199 (1961). · Zbl 0103.16001
[3] Atiyah, M. F., andF. Hirzebruch: Riemann-Roch theorems for differentiable manifolds. Bull. Amer. Math. Soc.,65, 276-281 (1959). · Zbl 0142.40901
[4] Atiyah, M. F., andF. Hirzebruch: Vector bundles and homogeneous spaces. Differential Geometry. Proceedings of Symposia in Pure Mathematics, vol. 3, American Mathematical Society 1961. · Zbl 0108.17705
[5] Borel, A., andF. Hirzebruch: Characteristic classes and homogeneous spaces I, II, III. Amer J. Math.80, 458-538 (1958);81, 315-382 (1959);82, 491-504 (1960). · Zbl 0097.36401
[6] ?, etJ. P. Serre: Le théorème de Riemann-Roch (d’après Grothendieck). Bull. Soc. Math. France86, 97-136 (1958).
[7] Cartan, H.: Sur les groupes d’Eilenberg-MacLane, I et II. Proc. Nat. Acad. Sci. U.S.A.40, 467-471 und 704-707 (1954). · Zbl 0055.41801
[8] Dold, A.: Vollständigkeit der Wuschen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten. Math. Z.65, 200-206 (1956). · Zbl 0071.17502
[9] Eilenberg, S., andN. Steenrod: Foundations of algebraic topology. Princeton Mathematical Series 15, Princeton University Press 1952. · Zbl 0047.41402
[10] Hirzebruch, F.: On Steenrod’s reduced powers, the index of inertia, and the Todd genus. Proc. Nat. Acad. Sci. U.S.A.39, 951-956 (1953). · Zbl 0051.14501
[11] Hirzebruch, F.: Neue topologische Methoden in der algebraischen Geometrie. Ergebnisse der Mathematik. Neue Folge, Heft 9. Berlin-Göttingen-Heidelberg 1956. · Zbl 0074.36701
[12] Hirzebruch, F.: Komplexe Mannigfaltigkeiten. Proc. of the Intern. Congr. of Math. 1958, Cambridge University Press 1960, pp. 119-136.
[13] Hirzebruch, F.: A Riemann-Roch theorem for differentiable manifolds. Séminaire Bourbaki, Exp. 177, Février 1959. · Zbl 0129.15406
[14] Milnor, J.: The geometric realization of a semi-simplicial complex. Ann. Math. (2)65, 357-362 (1957). · Zbl 0078.36602
[15] Milnor, J.: Lectures on characteristic classes. Mimeographed notes. Princeton 1957.
[16] ?: The Steenrod algebra and its dual. Ann. Math.67, 150-171 (1958). · Zbl 0080.38003
[17] ?: On the cobordism ring ?* and a complex analogue, Part I. Amer. J. Math.82, 505-521 (1960). Part II erscheint demnächst. · Zbl 0095.16702
[18] Puppe, D.: Homotopiemengen und ihre induzierten Abbildungen I. Math Z.69, 299-344 (1958). · Zbl 0092.39803
[19] Serre, J. P.: Cohomologie modulo 2 des complexes d’Eilenberg-MacLane. Comm. Math. Helv.27, 198-232 (1953). · Zbl 0052.19501
[20] Steenrod, N.: Homology groups of symmetric groups and reduced power operations. Proc. Nat. Acad. Sci. U.S.A.39, 213-223 (1953). · Zbl 0050.39401
[21] Steenrod, N.: Cohomology operations and obstructions to extending continuous functions. Colloquium lectures. Mimeographed notes. Princeton 1957.
[22] Thom, R.: Quelques propriétés globales des variétés différentiables. Comm. Math. Helv.28, 17-86 (1954). · Zbl 0057.15502
[23] Uspensky, J. V., andM. A. Heaslet: Elementary Number Theory. New York 1939. · Zbl 0022.30602
[24] Whitehead, J. H. C.: Combinatorial homotopy I. Bull. Amer. Math. Soc.55, 213-245 (1949). · Zbl 0040.38704
[25] Wu Wen-Tsun: Classes caractéristiques eti-carrés d’une variété. C. R. Acad. Sci., Paris230, 508-511 (1950).
[26] Wu Wen-Tsun: Sur les puissances de Steenrod. Colloque de Topologie de Strasbourg 1951 (vervielfältigt).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.