×

zbMATH — the first resource for mathematics

On the formal definition of categories. (English) Zbl 0109.24202

Keywords:
set theory
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bachmann, H.: Transfinite Zahlen. In: Ergebnisse der Math. Wiss. I. Berlin-Göttingen-Heidelberg: Springer 1955. · Zbl 0065.03506
[2] Bourbaki, N.: Foundations of Mathematics for the working mathematician. J. Symb. Logic14, 1-8 (1949). · Zbl 0034.00105
[3] ?: Théorie des ensembles. Paris: Hermann chap. 1,2: 1960, chap. 4: 1957.
[4] Church, A.: Introduction to Mathematical logic. Princeton 1956. · Zbl 0073.24301
[5] Dedecker, P.: Introduction aux structures locales, Colloque de Géométrie différentielle globale (CBRM), Bruxelles 1958, p. 103-135.
[6] Eckmann, E., andP. Hilton: Group-like structures in general categories I. Math. Annalen145, 227-255 (1962). · Zbl 0099.02101
[7] Ehresmann, C.: Gattungen von lokalen Strukturen. Jber. d. Math.-Ver.60, 49-77 (1957). · Zbl 0097.37803
[8] Fraenkel, A.: Einleitung in die Mengenlehre. Berlin 1928. · JFM 54.0086.01
[9] Fraenkel, A., andY. Bar-Hillel: Foundations of set theory. Amsterdam 1958. · Zbl 0082.26203
[10] Godement, R.: Topologie algébrique et théorie des faisceaux. Paris: Hermann 1958. · Zbl 0080.16201
[11] Kelley, J.: General Topology. New York: D. van Nostrand 1953. · Zbl 0157.53002
[12] Kleisli, H.: Homotopy theory in abelian categories. Canad. J. of Math.14, 139-169 (1962). · Zbl 0108.02001
[13] Lévy, A.: Axiom Schemata of strong infinity in axiomatic set theory. Pac. J. Math.10, 223-238 (1960). · Zbl 0201.32602
[14] MacLane, S.: Locally small categories and the foundations of set theory. Symposium, Warsaw 1959, p. 25-43.
[15] Tarski, A.: Über unerreichbare Kardinalzahlen. Fundamenta Mathem.30, 68-89 (1938). · JFM 64.0033.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.