×

A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. (English) Zbl 0111.09301


PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hopf, Math. Z. 30 pp 404– (1929)
[2] Hopf, Math. Z. 34 pp 194– (1932)
[3] Morrey, Trans. Amer. Math. Soc. 43 pp 126– (1938)
[4] De Giorgi, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat., Ser. 3 3 pp 25– (1957)
[5] Nash, Amer. J. Math. 80 pp 931– (1958)
[6] and , On linear and non-linear elliptic boundary value problems in the plane, Atti Convegno Intern. Equaz. Deriv. Parziali, Trieste, 1954, pp. 141–167.
[7] Stampacchia, Ann. Scuola Norm. Super. Pisa 12 pp 223– (1958)
[8] Sobolev, Mat. Sbornik 4 pp 471– (1938)
[9] Morrey, Math. Z. 72 pp 146– (1959)
[10] also Univ. of California, Dept. of Math., Tech. Rep., 1959.
[11] Problemi al contorno ellittici con dati discontinui dotati di soluzioni Hölderiane, Universita di Genova, Feb., 1960.
[12] Nirenberg, Ann. Scuola Norm. Super. Pisa, Ser. 3 13 pp 1– (1959)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.