×

Ein Verfahren zur Aufspaltung einer 3-Mannigfaltigkeit in irreduzible 3- Mannigfaltigkeiten. (German) Zbl 0111.18803


Keywords:

topology
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Alexander, J. W.: On the subdivision of polyhedra in 3-space. Proc. Nat. Acad. Sci.10, 6-8 (1924). · JFM 50.0659.01 · doi:10.1073/pnas.10.1.6
[2] Alexandroff, P., u.H. Hopf: Topologie. Berlin 1935.
[3] Bing, R. H.: An alternative proof that 3-manifolds can be triangulated. Ann. Math.69, 37-65 (1959). · Zbl 0106.16604 · doi:10.2307/1970092
[4] Fox, R. H.: On the imbedding of polyhedra in 3-space. Ann. Math.49, 462-470 (1948). · Zbl 0032.12502 · doi:10.2307/1969291
[5] Haken, W.: Theorie der Normalflächen. Ein Isotopiekriterium für den Kreisknoten. Acta math.105, 245-375 (1961). · Zbl 0100.19402 · doi:10.1007/BF02559591
[6] Kneser, H.: Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jber. dtsch. Mathematikervereinig.38, 248-260 (1929). · JFM 55.0311.03
[7] Milnor, J. W.: A unique decomposition theorem for 3-manifolds. Im Druck. · Zbl 0108.36501
[8] Moise, E. E.: Affine structures in 3-manifolds. V. Ann. Math.56, 96-114 (1952). · Zbl 0048.17102 · doi:10.2307/1969769
[9] ?: Affine Structures in 3-manifolds. VIII. Ann. Math.59, 159-170 (1954). · Zbl 0055.16804 · doi:10.2307/1969837
[10] Papakyriakopoulos, C. D.: On Dehn’s lemma and the asphericity of knots. Ann. Math.66, 1-26 (1957). · Zbl 0078.16402 · doi:10.2307/1970113
[11] ?: Some problems on 3-dimensional manifolds. Bull. Amer. Math. Soc.64, 317-335 (1958). · Zbl 0088.39502 · doi:10.1090/S0002-9904-1958-10222-0
[12] Reidemeister, K.: Topologie der Polyeder und kombinatorische Topologie der Komplexe. Leipzig 1953. · Zbl 0050.17202
[13] Seifert, H., u.W. Threlfall: Lehrbuch der Topologie, Leipzig 1934. · Zbl 0009.08601
[14] Whitehead, J. H. C.: On 2-spheres in 3-manifolds. Bull. Amer. Math. Soc.64, 161-166 (1958). · Zbl 0084.19103 · doi:10.1090/S0002-9904-1958-10193-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.